Experimental and Numerical Investigation of Scale Effects on the Flow Over a Sedan Vehicle

IF 2 3区 工程技术 Q3 MECHANICS
Guilherme Espíndola da Silva, Rafael Rezende Dias, Odenir de Almeida, Anderson Ramos Proença
{"title":"Experimental and Numerical Investigation of Scale Effects on the Flow Over a Sedan Vehicle","authors":"Guilherme Espíndola da Silva,&nbsp;Rafael Rezende Dias,&nbsp;Odenir de Almeida,&nbsp;Anderson Ramos Proença","doi":"10.1007/s10494-025-00651-w","DOIUrl":null,"url":null,"abstract":"<div><p>Experiments and numerical modeling on vehicle aerodynamics were conducted in a Reynolds (Re) number one order of magnitude lower than that of typical full-scale application. Drag coefficient, velocity profile measurements and flow visualization were the focus with the proposition of comparing scale effects of a 1:10 sedan passenger vehicle model with numerical data from full-scale (1:1) based on the Reynolds Averaged Navier–Stokes (RANS) approach. After the validation of the numerical approach at 1:10 scale, additional investigation of sharp and rounded fillets presented on the car’s geometry showed to be relevant to the calculation of the separating shear layers and drag prediction, although the general wake structures are qualitatively similar. Effects of the reduced scale are translated to low Reynolds number where viscous effects starts to play a role. Detailed flow features such as recirculating regions and reversing flow acts on the model’s surface while the near wake velocity field is well captured and evaluated both experimentally and numerically. The results permitted to characterize flow details based on Re number flow, to show the effects of sharp corners on the model and to scrutinize the influence of scale effects on vehicle’s aerodynamics.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 4","pages":"1149 - 1177"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-025-00651-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Experiments and numerical modeling on vehicle aerodynamics were conducted in a Reynolds (Re) number one order of magnitude lower than that of typical full-scale application. Drag coefficient, velocity profile measurements and flow visualization were the focus with the proposition of comparing scale effects of a 1:10 sedan passenger vehicle model with numerical data from full-scale (1:1) based on the Reynolds Averaged Navier–Stokes (RANS) approach. After the validation of the numerical approach at 1:10 scale, additional investigation of sharp and rounded fillets presented on the car’s geometry showed to be relevant to the calculation of the separating shear layers and drag prediction, although the general wake structures are qualitatively similar. Effects of the reduced scale are translated to low Reynolds number where viscous effects starts to play a role. Detailed flow features such as recirculating regions and reversing flow acts on the model’s surface while the near wake velocity field is well captured and evaluated both experimentally and numerically. The results permitted to characterize flow details based on Re number flow, to show the effects of sharp corners on the model and to scrutinize the influence of scale effects on vehicle’s aerodynamics.

轿车流动尺度效应的实验与数值研究
在比典型全尺寸应用低一个数量级的雷诺数(Re)条件下进行了车辆空气动力学实验和数值模拟。阻力系数、速度剖面测量和流动可视化是研究的重点,并提出了将1:10轿车乘用车模型的比例效应与基于Reynolds平均Navier-Stokes (RANS)方法的全尺寸(1:1)数值数据进行比较的建议。在1:10比例的数值方法验证后,对汽车几何形状上呈现的尖锐和圆形圆角的进一步研究表明,尽管一般尾流结构在质量上相似,但与分离剪切层的计算和阻力预测相关。缩小尺度的影响转化为低雷诺数,粘性效应开始发挥作用。详细的流动特征,如回流区域和回流作用于模型表面,而近尾迹速度场被很好地捕获和评估了实验和数值。这些结果可以描述基于雷诺数流的流动细节,显示尖角对模型的影响,并仔细检查尺度效应对车辆空气动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信