Guanqin Jin , Shihuang Liu , Kewei Zheng , Xiaobo Cheng , Ranran Chai , Wei Ye , Wei Wei , Yongguo Li , Ai Huang , Guiling Li , Huan Yi , Yu Kang
{"title":"Therapeutic management of PI3Kα inhibitor-induced hyperglycemia with a novel glucokinase activator: Advancing the Frontier of PI3Kα inhibitor therapy","authors":"Guanqin Jin , Shihuang Liu , Kewei Zheng , Xiaobo Cheng , Ranran Chai , Wei Ye , Wei Wei , Yongguo Li , Ai Huang , Guiling Li , Huan Yi , Yu Kang","doi":"10.1016/j.molmet.2025.102151","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>The phosphatidylinositol 3-kinase (PI3K) signaling pathway is a pivotal target in cancer treatment, driving substantial investigation into PI3K inhibitors (PI3Ki). However, the common on-target adverse effect of hyperglycemia presents a substantial challenge to their clinical application. There is an urgent need to discover an anti-hyperglycemic agent that maintains the efficacy of PI3Ki.</div></div><div><h3>Methods</h3><div>We conducted a comprehensive study to explore the interaction between exogenous hyperinsulinemia and PI3Ki in SKOV3 and OVCAR3 ovarian cancer cell lines. We used Western blotting, CCK-8, and EdU assays to determine the effect of this interaction on cell proliferation. In addition, we evaluated the anti-hyperglycemic effects of dorzagliatin in a PI3Ki-induced hyperglycemic mice model. Cell line-derived xenograft (CDX) models were employed to evaluate the in vivo tumor growth inhibitory effects of combining dorzagliatin with PI3Ki.</div></div><div><h3>Results</h3><div>Western blot analysis demonstrated that insulin activated the AKT/INSR/mTOR pathway, reversing PI3Ki-induced p-AKT inhibition. Insulin also attenuated the anti-proliferative effects of PI3Ki. In the hyperglycemic mouse model, dorzagliatin significantly reduced blood glucose levels compared to controls. The combination therapy group (Dorzagliatin + PI3Ki) in CDX models showed a marked reduction in tumor volume. Dorzagliatin not only mitigated hyperglycemia but also enhanced the anti-tumor effects of PI3Ki. A clinical trial (NCT06117566) in cervical cancer patients supported these findings, showing that dorzagliatin stabilized blood glucose levels, facilitated body weight recovery, and achieved a confirmed partial response (PR).</div></div><div><h3>Conclusions</h3><div>Dorzagliatin shows promise for managing PI3Ki-associated hyperglycemia, thereby enhancing its therapeutic efficacy. The activation of liver glycogen kinase and insulin regulation may be key mechanisms underlying its therapeutic benefits.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"96 ","pages":"Article 102151"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212877825000584","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is a pivotal target in cancer treatment, driving substantial investigation into PI3K inhibitors (PI3Ki). However, the common on-target adverse effect of hyperglycemia presents a substantial challenge to their clinical application. There is an urgent need to discover an anti-hyperglycemic agent that maintains the efficacy of PI3Ki.
Methods
We conducted a comprehensive study to explore the interaction between exogenous hyperinsulinemia and PI3Ki in SKOV3 and OVCAR3 ovarian cancer cell lines. We used Western blotting, CCK-8, and EdU assays to determine the effect of this interaction on cell proliferation. In addition, we evaluated the anti-hyperglycemic effects of dorzagliatin in a PI3Ki-induced hyperglycemic mice model. Cell line-derived xenograft (CDX) models were employed to evaluate the in vivo tumor growth inhibitory effects of combining dorzagliatin with PI3Ki.
Results
Western blot analysis demonstrated that insulin activated the AKT/INSR/mTOR pathway, reversing PI3Ki-induced p-AKT inhibition. Insulin also attenuated the anti-proliferative effects of PI3Ki. In the hyperglycemic mouse model, dorzagliatin significantly reduced blood glucose levels compared to controls. The combination therapy group (Dorzagliatin + PI3Ki) in CDX models showed a marked reduction in tumor volume. Dorzagliatin not only mitigated hyperglycemia but also enhanced the anti-tumor effects of PI3Ki. A clinical trial (NCT06117566) in cervical cancer patients supported these findings, showing that dorzagliatin stabilized blood glucose levels, facilitated body weight recovery, and achieved a confirmed partial response (PR).
Conclusions
Dorzagliatin shows promise for managing PI3Ki-associated hyperglycemia, thereby enhancing its therapeutic efficacy. The activation of liver glycogen kinase and insulin regulation may be key mechanisms underlying its therapeutic benefits.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.