{"title":"Approximations of multi-period liability values by simple formulas","authors":"Nils Engler, Filip Lindskog","doi":"10.1016/j.insmatheco.2025.103112","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is motivated by computational challenges arising in multi-period valuation in insurance. Aggregate insurance liability cashflows typically correspond to stochastic payments several years into the future. However, insurance regulation requires that capital requirements are computed for a one-year horizon, by considering cashflows during the year and end-of-year liability values. This implies that liability values must be computed recursively, backwards in time, starting from the year of the most distant liability payments. Solving such backward recursions with paper and pen is rarely possible, and numerical solutions give rise to major computational challenges.</div><div>The aim of this paper is to provide explicit and easily computable expressions for multi-period valuations that appear as limit objects for a sequence of multi-period models that converge in terms of conditional weak convergence. Such convergence appears naturally if we consider large insurance portfolios such that the liability cashflows, appropriately centered and scaled, converge weakly as the size of the portfolio tends to infinity.</div></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"123 ","pages":"Article 103112"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668725000599","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is motivated by computational challenges arising in multi-period valuation in insurance. Aggregate insurance liability cashflows typically correspond to stochastic payments several years into the future. However, insurance regulation requires that capital requirements are computed for a one-year horizon, by considering cashflows during the year and end-of-year liability values. This implies that liability values must be computed recursively, backwards in time, starting from the year of the most distant liability payments. Solving such backward recursions with paper and pen is rarely possible, and numerical solutions give rise to major computational challenges.
The aim of this paper is to provide explicit and easily computable expressions for multi-period valuations that appear as limit objects for a sequence of multi-period models that converge in terms of conditional weak convergence. Such convergence appears naturally if we consider large insurance portfolios such that the liability cashflows, appropriately centered and scaled, converge weakly as the size of the portfolio tends to infinity.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.