{"title":"Improving detections of serial dynamics for longitudinal actuarial data with underwriting-controlled testing","authors":"Tsz Chai Fung","doi":"10.1016/j.insmatheco.2025.103111","DOIUrl":null,"url":null,"abstract":"<div><div>Longitudinal actuarial data, where policyholders' claims are recorded over multiple years, offer valuable insights for pricing and reserving. However, standard modeling approaches typically assume no serial dynamics in conditional claim distributions over time. Such an assumption is difficult to validate given that most non-life insurance products are short-term, yielding data from only a few years. Recent diagnostic methods can detect serial dynamics but do not distinguish between changes induced by endogenous underwriting standards (e.g., renewal and pricing policies favoring low-risk policyholders) and genuine, exogenous temporal shifts (e.g., evolving socioeconomic environment). In this paper, we develop underwriting-controlled serial dynamic tests for longitudinal actuarial data. By applying an inverse-probability-weighted estimation approach, we adjust for underwriting effects and thus detect the true underlying serial dynamics. We propose tests based on three metrics, parameter difference, prediction bias, and prediction loss, enabling both statistical and economic interpretations of dynamic changes. Simulation studies show that our tests avoid false detections caused by underwriting effects. An analysis using European automobile insurance data illustrates how our approach offers deeper insights into when and why serial dynamics emerge.</div></div>","PeriodicalId":54974,"journal":{"name":"Insurance Mathematics & Economics","volume":"123 ","pages":"Article 103111"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insurance Mathematics & Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167668725000587","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Longitudinal actuarial data, where policyholders' claims are recorded over multiple years, offer valuable insights for pricing and reserving. However, standard modeling approaches typically assume no serial dynamics in conditional claim distributions over time. Such an assumption is difficult to validate given that most non-life insurance products are short-term, yielding data from only a few years. Recent diagnostic methods can detect serial dynamics but do not distinguish between changes induced by endogenous underwriting standards (e.g., renewal and pricing policies favoring low-risk policyholders) and genuine, exogenous temporal shifts (e.g., evolving socioeconomic environment). In this paper, we develop underwriting-controlled serial dynamic tests for longitudinal actuarial data. By applying an inverse-probability-weighted estimation approach, we adjust for underwriting effects and thus detect the true underlying serial dynamics. We propose tests based on three metrics, parameter difference, prediction bias, and prediction loss, enabling both statistical and economic interpretations of dynamic changes. Simulation studies show that our tests avoid false detections caused by underwriting effects. An analysis using European automobile insurance data illustrates how our approach offers deeper insights into when and why serial dynamics emerge.
期刊介绍:
Insurance: Mathematics and Economics publishes leading research spanning all fields of actuarial science research. It appears six times per year and is the largest journal in actuarial science research around the world.
Insurance: Mathematics and Economics is an international academic journal that aims to strengthen the communication between individuals and groups who develop and apply research results in actuarial science. The journal feels a particular obligation to facilitate closer cooperation between those who conduct research in insurance mathematics and quantitative insurance economics, and practicing actuaries who are interested in the implementation of the results. To this purpose, Insurance: Mathematics and Economics publishes high-quality articles of broad international interest, concerned with either the theory of insurance mathematics and quantitative insurance economics or the inventive application of it, including empirical or experimental results. Articles that combine several of these aspects are particularly considered.