Fabian Gumpert , Dominik Eitel , Olaf Kottas , Uta Helbig , Jan Lohbreier
{"title":"Multiscale simulations of three-dimensional nanotube networks: Enhanced modeling using unit cells","authors":"Fabian Gumpert , Dominik Eitel , Olaf Kottas , Uta Helbig , Jan Lohbreier","doi":"10.1016/j.commatsci.2025.113891","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a simulation approach for three-dimensional nanotube networks using cubic and tetragonal unit cells to enhance modeling efficiency. A random-walk algorithm was developed to generate these networks, which were analyzed using a Finite Element Method (FEM) simulation to assess their electrical conductivity. The percolation probability as a function of the nanotube filling factor can be derived from these simulation results. Smaller tetragonal unit cells can replicate the behavior of larger networks with significantly reduced computational effort, achieving up to a 20-fold reduction in computation time while obtaining similar results. In this work, the focus is on carbon-doped titanate nanotubes for hydrogen applications, but the method is adaptable to other applications with similar nanotube network composites. The findings are expected to provide a universal framework for the investigation of nanotube-based materials.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"254 ","pages":"Article 113891"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025625002344","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a simulation approach for three-dimensional nanotube networks using cubic and tetragonal unit cells to enhance modeling efficiency. A random-walk algorithm was developed to generate these networks, which were analyzed using a Finite Element Method (FEM) simulation to assess their electrical conductivity. The percolation probability as a function of the nanotube filling factor can be derived from these simulation results. Smaller tetragonal unit cells can replicate the behavior of larger networks with significantly reduced computational effort, achieving up to a 20-fold reduction in computation time while obtaining similar results. In this work, the focus is on carbon-doped titanate nanotubes for hydrogen applications, but the method is adaptable to other applications with similar nanotube network composites. The findings are expected to provide a universal framework for the investigation of nanotube-based materials.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.