Combined inhibition of hexokinase 2 and pyruvate dehydrogenase surmounts SHP2 inhibitor resistance in non-small cell lung cancer with hybrid metabolic state harboring KRAS Q61H mutation
Wenying Shan , Shao-Lin Zhang , Yehuda G. Assaraf , Kin Yip Tam
{"title":"Combined inhibition of hexokinase 2 and pyruvate dehydrogenase surmounts SHP2 inhibitor resistance in non-small cell lung cancer with hybrid metabolic state harboring KRAS Q61H mutation","authors":"Wenying Shan , Shao-Lin Zhang , Yehuda G. Assaraf , Kin Yip Tam","doi":"10.1016/j.bbadis.2025.167859","DOIUrl":null,"url":null,"abstract":"<div><div>KRAS Q61H is an aggressive oncogenic driver mutation rendering cancer cells drug resistant to SHP2 inhibitors (SHP2i). Some metastatic and chemoresistant non-small cell lung cancer (NSCLC) cells, exhibit a hybrid metabolic state in which both glycolysis and oxidative phosphorylation (OXPHOS) coexist. Hence, we evaluated the <em>in vitro</em> and <em>in vivo</em> efficacy of a combination of hexokinase 2 (HK2) and pyruvate dehydrogenase (PDH) inhibitors, benserazide (Benz) and CPI-613, respectively, against NSCLC NCI-H460 cells harboring the driver KRAS Q61H mutation. This combination synergistically disrupted the hybrid metabolic state, inhibited NCI-H460 cell proliferation <em>in vitro</em>, and markedly suppressed tumor growth in NCI-H460 cell xenograft model in mice. The molecular basis underlying this antitumor activity was apparently due to suppression of SHP2/SOS1/RAS/MAPK signaling pathways, leading to enhanced apoptosis. Moreover, this drug combination restored the sensitivity to SHP2i. Consistently, SHP2 overexpression in NCI-H460 cells abrogated the antitumor activity of this drug combination. These findings reveal that the combination of Benz and CPI-613 targets the metabolic vulnerability of KRAS Q61H mutant-bearing NSCLC tumors. These results offer a combination therapeutic strategy for the possible treatment of cancer cells displaying a hybrid metabolic state, thereby surmounting chemoresistance.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 6","pages":"Article 167859"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925002042","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
KRAS Q61H is an aggressive oncogenic driver mutation rendering cancer cells drug resistant to SHP2 inhibitors (SHP2i). Some metastatic and chemoresistant non-small cell lung cancer (NSCLC) cells, exhibit a hybrid metabolic state in which both glycolysis and oxidative phosphorylation (OXPHOS) coexist. Hence, we evaluated the in vitro and in vivo efficacy of a combination of hexokinase 2 (HK2) and pyruvate dehydrogenase (PDH) inhibitors, benserazide (Benz) and CPI-613, respectively, against NSCLC NCI-H460 cells harboring the driver KRAS Q61H mutation. This combination synergistically disrupted the hybrid metabolic state, inhibited NCI-H460 cell proliferation in vitro, and markedly suppressed tumor growth in NCI-H460 cell xenograft model in mice. The molecular basis underlying this antitumor activity was apparently due to suppression of SHP2/SOS1/RAS/MAPK signaling pathways, leading to enhanced apoptosis. Moreover, this drug combination restored the sensitivity to SHP2i. Consistently, SHP2 overexpression in NCI-H460 cells abrogated the antitumor activity of this drug combination. These findings reveal that the combination of Benz and CPI-613 targets the metabolic vulnerability of KRAS Q61H mutant-bearing NSCLC tumors. These results offer a combination therapeutic strategy for the possible treatment of cancer cells displaying a hybrid metabolic state, thereby surmounting chemoresistance.
期刊介绍:
BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.