{"title":"Design of platinum group metal-free automotive three-way catalyst: MgMn2O4 and CuCo2O4 in tandem layout","authors":"Keisuke Maruichi , Taichi Yamaguchi , Ryosuke Sakai , Kakuya Ueda , Akira Oda , Atsushi Satsuma","doi":"10.1016/j.apcata.2025.120305","DOIUrl":null,"url":null,"abstract":"<div><div>Platinum group metal (PGM)-free and Cr-free automotive three-way catalyst (TWC) was examined using two types of base-metal oxides for hydrocarbon preferential oxidation (HC-PROX) and NO reduction by CO in tandem configuration. MnOx-based binary mixed metal oxides (X1Mn2, X = Ba, Ca, Co, Cu, Fe, Mg, Ni, Zn, Zr) were investigated for the design of HC-PROX catalysts. Mg1Mn2 achieved both high propene oxidation activity and low CO oxidation activity, and the catalyst phase was determined as MgMn<sub>2</sub>O<sub>4</sub> having the spinel structure. A tandem TWC composed of MgMn<sub>2</sub>O<sub>4</sub> for HC-PROX and CuCo<sub>2</sub>O<sub>4</sub> for NO-CO reaction showed comparable NO reduction activity and higher oxidation activity of propene and CO compared to Rh/ZrO<sub>2</sub> as a benchmark. In-situ FTIR study clarified that the suppression of CO oxidation over MgMn<sub>2</sub>O<sub>4</sub> is caused by strongly adsorbed acetate and formate on the catalyst surface.</div></div>","PeriodicalId":243,"journal":{"name":"Applied Catalysis A: General","volume":"700 ","pages":"Article 120305"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis A: General","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926860X25002066","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Platinum group metal (PGM)-free and Cr-free automotive three-way catalyst (TWC) was examined using two types of base-metal oxides for hydrocarbon preferential oxidation (HC-PROX) and NO reduction by CO in tandem configuration. MnOx-based binary mixed metal oxides (X1Mn2, X = Ba, Ca, Co, Cu, Fe, Mg, Ni, Zn, Zr) were investigated for the design of HC-PROX catalysts. Mg1Mn2 achieved both high propene oxidation activity and low CO oxidation activity, and the catalyst phase was determined as MgMn2O4 having the spinel structure. A tandem TWC composed of MgMn2O4 for HC-PROX and CuCo2O4 for NO-CO reaction showed comparable NO reduction activity and higher oxidation activity of propene and CO compared to Rh/ZrO2 as a benchmark. In-situ FTIR study clarified that the suppression of CO oxidation over MgMn2O4 is caused by strongly adsorbed acetate and formate on the catalyst surface.
期刊介绍:
Applied Catalysis A: General publishes original papers on all aspects of catalysis of basic and practical interest to chemical scientists in both industrial and academic fields, with an emphasis onnew understanding of catalysts and catalytic reactions, new catalytic materials, new techniques, and new processes, especially those that have potential practical implications.
Papers that report results of a thorough study or optimization of systems or processes that are well understood, widely studied, or minor variations of known ones are discouraged. Authors should include statements in a separate section "Justification for Publication" of how the manuscript fits the scope of the journal in the cover letter to the editors. Submissions without such justification will be rejected without review.