Tracking crystal-melt segregation and accumulation in mushy reservoirs: Implication for silicic magma formation in tarim large igneous province

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
ChangQuan Li, Zhaochong Zhang, Changhong Wang, Zhiguo Cheng, Dan Gao
{"title":"Tracking crystal-melt segregation and accumulation in mushy reservoirs: Implication for silicic magma formation in tarim large igneous province","authors":"ChangQuan Li,&nbsp;Zhaochong Zhang,&nbsp;Changhong Wang,&nbsp;Zhiguo Cheng,&nbsp;Dan Gao","doi":"10.1016/j.lithos.2025.108099","DOIUrl":null,"url":null,"abstract":"<div><div>The genesis of silicic (SiO<sub>2</sub> &gt; 70 wt%) magmas in Large Igneous Provinces (LIPs) has traditionally been related to partial melting of pre-existing crust and/or crystal fractionation of mantle-derived basaltic magma. Recent petrological studies highlight crystal-melt segregation as a significant mechanism for generating silicic magmas and establishing genetic links between volcanic and plutonic rocks. The identification of complementary cumulate residues at the base of crystal mush and the necessary mafic magmas for mush reactivation has proven challenging, leading to the elusive recognition of crystal accumulations in plutonic rocks with intermediate to silicic compositions. The Xiaohaizi complex in the Tarim LIP in NW China consists of plutonic rocks ranging from mafic to silicic (45–75 wt% SiO<sub>2</sub>). This complex provides a natural laboratory for investigating the in-situ crystal-melt segregation process in the shallow crust. Rayleigh fractionation modeling of Ba, Sr, Eu, and Rb reveals that quartz syenites and granites embody highly evolved, extracted melts, while amphibole syenites and fayalite syenites correspond to the complementary cumulate residues. The quartz syenite porphyry likely represent well-preserved snapshot of the parental magma's initial chemical characteristics. Mineral textures and crystal size distribution (CSD) patterns effectively differentiate between cumulate residues and extracted melts. Variations in Eu/Eu*, Rb, and Ba in alkaline feldspars support feldspar accumulation in mush. During magmatic evolution, temperature and pressure of the Xiaohaizi intermediate to silicic magmatic rock gradually decrease from 950 °C to 700 °C and 300 MPa to 100 MPa, respectively. High melt water content (H<sub>2</sub>O<sub>melt</sub> = ∼4 wt%) in these magmas enhances the efficiency of crystal-melt segregation. The injection of deep, high-temperature (1000 °C ∼ 1100 °C, 300–500 MPa) wehrlite magmas can prolong the crystal-melt segregation process. The similarity in magmatic oxygen fugacity and melt water contents among the mafic, intermediate, and silicic rocks suggests a physicochemical inheritance throughout the magma evolution process. This complex can preserve records of crystal-melt separation process to produce silicic magmas in the shallow crust, providing new evidence for mush model during the Permian within the Tarim LIP.</div></div>","PeriodicalId":18070,"journal":{"name":"Lithos","volume":"508 ","pages":"Article 108099"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithos","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024493725001586","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The genesis of silicic (SiO2 > 70 wt%) magmas in Large Igneous Provinces (LIPs) has traditionally been related to partial melting of pre-existing crust and/or crystal fractionation of mantle-derived basaltic magma. Recent petrological studies highlight crystal-melt segregation as a significant mechanism for generating silicic magmas and establishing genetic links between volcanic and plutonic rocks. The identification of complementary cumulate residues at the base of crystal mush and the necessary mafic magmas for mush reactivation has proven challenging, leading to the elusive recognition of crystal accumulations in plutonic rocks with intermediate to silicic compositions. The Xiaohaizi complex in the Tarim LIP in NW China consists of plutonic rocks ranging from mafic to silicic (45–75 wt% SiO2). This complex provides a natural laboratory for investigating the in-situ crystal-melt segregation process in the shallow crust. Rayleigh fractionation modeling of Ba, Sr, Eu, and Rb reveals that quartz syenites and granites embody highly evolved, extracted melts, while amphibole syenites and fayalite syenites correspond to the complementary cumulate residues. The quartz syenite porphyry likely represent well-preserved snapshot of the parental magma's initial chemical characteristics. Mineral textures and crystal size distribution (CSD) patterns effectively differentiate between cumulate residues and extracted melts. Variations in Eu/Eu*, Rb, and Ba in alkaline feldspars support feldspar accumulation in mush. During magmatic evolution, temperature and pressure of the Xiaohaizi intermediate to silicic magmatic rock gradually decrease from 950 °C to 700 °C and 300 MPa to 100 MPa, respectively. High melt water content (H2Omelt = ∼4 wt%) in these magmas enhances the efficiency of crystal-melt segregation. The injection of deep, high-temperature (1000 °C ∼ 1100 °C, 300–500 MPa) wehrlite magmas can prolong the crystal-melt segregation process. The similarity in magmatic oxygen fugacity and melt water contents among the mafic, intermediate, and silicic rocks suggests a physicochemical inheritance throughout the magma evolution process. This complex can preserve records of crystal-melt separation process to produce silicic magmas in the shallow crust, providing new evidence for mush model during the Permian within the Tarim LIP.
泥质储层中晶体-熔体分离与聚集的追踪:塔里木大火成岩省硅质岩浆形成的意义
硅(SiO2 >;在大火成岩省(lip), 70% (wt%)的岩浆传统上与原有地壳的部分熔融和/或幔源玄武岩岩浆的晶体分馏有关。近年来的岩石学研究强调,晶体-熔体分离是形成硅质岩浆的重要机制,并在火山岩和深部岩体之间建立了成因联系。鉴定结晶体底部的互补堆积残留物和浆液再活化所必需的基性岩浆具有挑战性,导致难以识别中-硅成分深成岩中的晶体聚集。塔里木盆地小海子杂岩由基性-硅质(45 ~ 75 wt% SiO2)深成岩组成。该杂岩为研究浅层地壳中原位晶体-熔体分离过程提供了一个天然的实验室。Ba、Sr、Eu和Rb的Rayleigh分馏模型表明,石英正长岩和花岗岩是高度演化、萃取的熔体,角闪洞正长岩和闪长岩正长岩则是互补的堆积残体。石英正长斑岩可能是原始岩浆初始化学特征保存完好的快照。矿物结构和晶体尺寸分布(CSD)模式可以有效区分堆积残留物和提取熔体。碱性长石中Eu/Eu*、Rb和Ba的变化支持长石呈糊状堆积。岩浆演化过程中,小海子中-硅质岩浆岩温度和压力分别从950℃- 700℃和300 MPa - 100 MPa逐渐降低。这些岩浆中的高熔体含水量(h2ommelt = ~ 4 wt%)提高了晶体-熔体分离的效率。注入深部高温(1000℃~ 1100℃,300 ~ 500 MPa)韦氏岩浆岩可以延长晶体-熔体偏析过程。基性岩、中间岩和硅质岩在岩浆氧逸度和熔融水含量上的相似性表明岩浆演化过程中存在物理化学遗传。该杂岩保存了浅部地壳中产生硅质岩浆的结晶-熔体分离过程记录,为塔里木盆地二叠纪时期的泥化模式提供了新的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lithos
Lithos 地学-地球化学与地球物理
CiteScore
6.80
自引率
11.40%
发文量
286
审稿时长
3.5 months
期刊介绍: Lithos publishes original research papers on the petrology, geochemistry and petrogenesis of igneous and metamorphic rocks. Papers on mineralogy/mineral physics related to petrology and petrogenetic problems are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信