uCite: The union of nine large-scale public PubMed citation datasets with reliability filtering

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Liri Fang , Malik Oyewale Salami , Griffin M. Weber , Vetle I. Torvik
{"title":"uCite: The union of nine large-scale public PubMed citation datasets with reliability filtering","authors":"Liri Fang ,&nbsp;Malik Oyewale Salami ,&nbsp;Griffin M. Weber ,&nbsp;Vetle I. Torvik","doi":"10.1016/j.dib.2025.111535","DOIUrl":null,"url":null,"abstract":"<div><div>There has been a recent push to make public, aggregate, and increase coverage of bibliographic citation data. Here we describe uCite, a citation dataset containing 564 million PubMed citation pairs aggregated from the following nine sources: PubMed Central, iCite, OpenCitations, Dimensions, Microsoft Academic Graph, Aminer, Semantic Scholar, Lens, and OpCitance. Of these, 51 million (9%) were labeled unreliable, as determined by patterns of source discrepancies explained by ambiguous metadata, crosswalk, and typographical errors, citing future publications, and multi-paper documents. Each source contributes to improved coverage and reliability, but varies dramatically in precision and recall, estimates of which are contrasted with the Web of Science and Scopus herein.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"60 ","pages":"Article 111535"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925002677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

There has been a recent push to make public, aggregate, and increase coverage of bibliographic citation data. Here we describe uCite, a citation dataset containing 564 million PubMed citation pairs aggregated from the following nine sources: PubMed Central, iCite, OpenCitations, Dimensions, Microsoft Academic Graph, Aminer, Semantic Scholar, Lens, and OpCitance. Of these, 51 million (9%) were labeled unreliable, as determined by patterns of source discrepancies explained by ambiguous metadata, crosswalk, and typographical errors, citing future publications, and multi-paper documents. Each source contributes to improved coverage and reliability, but varies dramatically in precision and recall, estimates of which are contrasted with the Web of Science and Scopus herein.
uCite:对9个大型公共PubMed引文数据集进行可靠性过滤的联合
最近一直在推动书目引文数据的公开、汇总和增加覆盖范围。uCite是一个包含5.64亿PubMed引文对的引文数据集,汇集了以下九个来源:PubMed Central、iCite、OpenCitations、Dimensions、Microsoft Academic Graph、Aminer、Semantic Scholar、Lens和OpCitance。其中,5100万篇(9%)被标记为不可靠,这是由模棱两可的元数据、人行横道和印刷错误解释的来源差异模式所决定的,引用了未来的出版物和多篇论文。每个来源都有助于提高覆盖范围和可靠性,但在准确性和召回率方面差异很大,这与本文的Web of Science和Scopus进行了对比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信