Quantum machine learning: A comprehensive review of integrating AI with quantum computing for computational advancements

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-04-18 DOI:10.1016/j.mex.2025.103318
Raghavendra M Devadas , Sowmya T
{"title":"Quantum machine learning: A comprehensive review of integrating AI with quantum computing for computational advancements","authors":"Raghavendra M Devadas ,&nbsp;Sowmya T","doi":"10.1016/j.mex.2025.103318","DOIUrl":null,"url":null,"abstract":"<div><div>Quantum Machine Learning (QML) is the emerging confluence of quantum computing and artificial intelligence that promises to solve computational problems inaccessible to classical systems. Using quantum principles such as superposition, entanglement, and interference, QML promises exponential speed-ups and new paradigms for data processing in machine learning tasks. This review gives an overview of QML, from advancements in quantum-enhanced classical ML to native quantum algorithms and hybrid quantum-classical frameworks. It varies from applications in optimization, drug discovery, and quantum-secured communications, showcasing how QML can change healthcare, finance, and logistics industries. Even though this approach holds so much promise, significant challenges remain to be addressed-noisy qubits, error correction, and limitations in data encoding-that must be overcome by interdisciplinary research soon. The paper tries to collate the state of the art of QML in theoretical underpinnings, practical applications, and directions into the future.</div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103318"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125001645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum Machine Learning (QML) is the emerging confluence of quantum computing and artificial intelligence that promises to solve computational problems inaccessible to classical systems. Using quantum principles such as superposition, entanglement, and interference, QML promises exponential speed-ups and new paradigms for data processing in machine learning tasks. This review gives an overview of QML, from advancements in quantum-enhanced classical ML to native quantum algorithms and hybrid quantum-classical frameworks. It varies from applications in optimization, drug discovery, and quantum-secured communications, showcasing how QML can change healthcare, finance, and logistics industries. Even though this approach holds so much promise, significant challenges remain to be addressed-noisy qubits, error correction, and limitations in data encoding-that must be overcome by interdisciplinary research soon. The paper tries to collate the state of the art of QML in theoretical underpinnings, practical applications, and directions into the future.

Abstract Image

量子机器学习:将人工智能与量子计算集成以实现计算进步的全面回顾
量子机器学习(QML)是量子计算和人工智能的新兴融合,有望解决经典系统无法解决的计算问题。利用叠加、纠缠和干涉等量子原理,QML有望实现指数级的加速,并为机器学习任务中的数据处理提供新的范例。本文综述了量子机器学习的进展,从量子增强经典机器学习到原生量子算法和混合量子经典框架。它从优化、药物发现和量子安全通信的应用中有所不同,展示了QML如何改变医疗保健、金融和物流行业。尽管这种方法有很大的希望,但仍有重大的挑战有待解决——噪声量子比特、纠错和数据编码的局限性——这些都必须尽快通过跨学科研究来克服。本文试图整理QML在理论基础、实际应用和未来方向方面的技术状况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信