Modulation of Se Vacancy on NiSe2@CoSe2 Heterostructures to Optimize Ethanol Electrooxidation Activity for Efficient Hybrid Water Splitting and Zinc-Ethanol-Air Batteries
{"title":"Modulation of Se Vacancy on NiSe2@CoSe2 Heterostructures to Optimize Ethanol Electrooxidation Activity for Efficient Hybrid Water Splitting and Zinc-Ethanol-Air Batteries","authors":"Jiahui Li, Feilong Fang, Zilong Li, Yongqi Jian, Junmin Zhu, Fangyan Xie, Jian Chen, Yanshuo Jin, Nan Wang, Xiyun Zhang, Hui Meng","doi":"10.1039/d5qi00621j","DOIUrl":null,"url":null,"abstract":"This work constructs a NiSe2@CoSe2 heterostructure with Se vacancies via electrochemical activation, increased the density of active sites, fine-tuned the electronic structure of the material and optimized Co 3d orbital spin states, and enabled superior ethanol oxidation (1.33 V @ j10), reducing energy consumption by 60% in water splitting and 20% in Zn-ethanol-air batteries.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"31 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00621j","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
This work constructs a NiSe2@CoSe2 heterostructure with Se vacancies via electrochemical activation, increased the density of active sites, fine-tuned the electronic structure of the material and optimized Co 3d orbital spin states, and enabled superior ethanol oxidation (1.33 V @ j10), reducing energy consumption by 60% in water splitting and 20% in Zn-ethanol-air batteries.