Yunjian Bai , Yadong Li , Yizhe Liu , Cheng Yang , Yun-Jiang Wang , Kun Zhang , Bingchen Wei
{"title":"Deformation Behavior and Strengthening Mechanisms of an Additively Manufactured High-Entropy Alloy with Hierarchical Heterostructures","authors":"Yunjian Bai , Yadong Li , Yizhe Liu , Cheng Yang , Yun-Jiang Wang , Kun Zhang , Bingchen Wei","doi":"10.1016/j.ijplas.2025.104347","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing (AM) of high-entropy alloys (HEAs) typically results in the formation of unique microstructures and deformation mechanisms, sparking widespread research interest. This study delves into the deformation behavior and strengthening mechanisms of an AMed HEA with hierarchical heterostructures. The results show that the alloy consists of the FCC matrix, coherent L1<sub>2</sub> precipitates, incoherent L2<sub>1</sub> precipitates with lens-shaped inclusions, and chemical cells. The distribution of the L2<sub>1</sub> phase and the lens-shaped inclusions are unique phenomena, mainly attributed to local chemical fluctuations during the AM process. The FCC matrix primarily contributes to plastic deformation, with L1<sub>2</sub> precipitates enhancing strength through ordered strengthening, and L2<sub>1</sub> precipitates providing strengthening via Orowan bypassing mechanism. Additionally, dislocation strengthening also contributes to the overall strength. Notably, the lens-shaped structures within the L2<sub>1</sub> phase undergo a stress-induced martensitic transformation during deformation, attributed to their inherent metastability, favorable microstructural locations and grain orientations. These findings deepen the understanding of the microstructures and deformation mechanisms of AMed HEAs, offering valuable insights for the design and optimization of high-performance HEAs in the future.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"189 ","pages":"Article 104347"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641925001068","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Additive manufacturing (AM) of high-entropy alloys (HEAs) typically results in the formation of unique microstructures and deformation mechanisms, sparking widespread research interest. This study delves into the deformation behavior and strengthening mechanisms of an AMed HEA with hierarchical heterostructures. The results show that the alloy consists of the FCC matrix, coherent L12 precipitates, incoherent L21 precipitates with lens-shaped inclusions, and chemical cells. The distribution of the L21 phase and the lens-shaped inclusions are unique phenomena, mainly attributed to local chemical fluctuations during the AM process. The FCC matrix primarily contributes to plastic deformation, with L12 precipitates enhancing strength through ordered strengthening, and L21 precipitates providing strengthening via Orowan bypassing mechanism. Additionally, dislocation strengthening also contributes to the overall strength. Notably, the lens-shaped structures within the L21 phase undergo a stress-induced martensitic transformation during deformation, attributed to their inherent metastability, favorable microstructural locations and grain orientations. These findings deepen the understanding of the microstructures and deformation mechanisms of AMed HEAs, offering valuable insights for the design and optimization of high-performance HEAs in the future.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.