Shock-Induced Devolatilization of Phlogopite, an Archetypical Phyllosilicate

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
X. Zhu, Y. Ye, R. Caracas
{"title":"Shock-Induced Devolatilization of Phlogopite, an Archetypical Phyllosilicate","authors":"X. Zhu,&nbsp;Y. Ye,&nbsp;R. Caracas","doi":"10.1029/2024JE008839","DOIUrl":null,"url":null,"abstract":"<p>The formation and evolution of rocky planets such as the Earth are marked by the heavy bombardments that dominated the first parts of the accretions. The outcomes of the large and giant impacts depend on the critical points and liquid-vapor equilibria of the constituent materials. Several determinations of the positions of the critical points have been conducted in the last few years, but they have mainly focused on systems devoid of volatiles. Here, we study, for the first time, a volatile-rich ubiquitous model mineral, phlogopite. For this, we employ ab initio molecular dynamics simulations. Its critical point is constrained in the 0.40–0.68 g/cm<sup>3</sup> density range and 5,000–5,500 K temperature range. This shows that adding volatiles decreases the critical temperature of silicates while having a smaller effect on the critical density. The vapor phase that forms under cooling from the supercritical state is dominated by hydrogen, present in the form of H<sub>2</sub>O, H, OH, with oxygen and various F-bearing phases coming next. Our simulations show that up to 93% of the total hydrogen is retained in the silicate melt. Our results suggest that early magma oceans must have been hydrated. In particular for the Moon's history, even if catastrophic dehydrogenation occurred during the cooling of the lunar magma ocean, the amount of water incorporated during its formation could have been sufficient to explain the amounts of water found today in the last lunar samples.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008839","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The formation and evolution of rocky planets such as the Earth are marked by the heavy bombardments that dominated the first parts of the accretions. The outcomes of the large and giant impacts depend on the critical points and liquid-vapor equilibria of the constituent materials. Several determinations of the positions of the critical points have been conducted in the last few years, but they have mainly focused on systems devoid of volatiles. Here, we study, for the first time, a volatile-rich ubiquitous model mineral, phlogopite. For this, we employ ab initio molecular dynamics simulations. Its critical point is constrained in the 0.40–0.68 g/cm3 density range and 5,000–5,500 K temperature range. This shows that adding volatiles decreases the critical temperature of silicates while having a smaller effect on the critical density. The vapor phase that forms under cooling from the supercritical state is dominated by hydrogen, present in the form of H2O, H, OH, with oxygen and various F-bearing phases coming next. Our simulations show that up to 93% of the total hydrogen is retained in the silicate melt. Our results suggest that early magma oceans must have been hydrated. In particular for the Moon's history, even if catastrophic dehydrogenation occurred during the cooling of the lunar magma ocean, the amount of water incorporated during its formation could have been sufficient to explain the amounts of water found today in the last lunar samples.

冲击诱导的辉绿岩(一种典型的叶硅酸盐)脱硅现象
像地球这样的岩石行星的形成和演化,其特点是在吸积的最初阶段,主要受到猛烈的轰击。巨大冲击的结果取决于组成物质的临界点和汽液平衡。在过去几年中,已经进行了几次临界点位置的确定,但它们主要集中在没有挥发物的系统上。在这里,我们第一次研究了一种富含挥发物的无处不在的模式矿物——云母。为此,我们采用从头算分子动力学模拟。其临界点限制在0.40 ~ 0.68 g/cm3的密度范围和5000 ~ 5500 K的温度范围内。这表明挥发物的加入降低了硅酸盐的临界温度,而对临界密度的影响较小。在超临界状态冷却下形成的气相主要是氢,以H2O, H, OH的形式存在,其次是氧和各种含f相。我们的模拟表明,高达93%的氢被保留在硅酸盐熔体中。我们的结果表明,早期的岩浆海洋一定是水合的。特别是在月球的历史上,即使在月球岩浆海洋冷却过程中发生了灾难性的脱氢,其形成过程中吸收的水的数量也足以解释今天在最后月球样本中发现的水的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信