Amanda V. Steckel, Gregory E. Tucker, Matthew Rossi, Brian Hynek
{"title":"Landscape Evolution Models of Incision on Mars: Implications for the Ancient Climate","authors":"Amanda V. Steckel, Gregory E. Tucker, Matthew Rossi, Brian Hynek","doi":"10.1029/2024JE008637","DOIUrl":null,"url":null,"abstract":"<p>Large dendritic valley networks observed on Mars present a paleoclimate paradox. Geologic observations of Noachian units on Mars reveal a global extent of valley networks, which are believed to have been formed through incisions made by flowing water. However, most climate models predict global surface temperatures too far below the freezing point of water to support an active hydrological system. Conflicting observations and models have led to disparate theories for the climate of early Mars. In this work, we surveyed a large region of the cratered southern highlands to identify the location, elevation, and distribution of observed valley heads. These valley head locations were compared to landscape evolution simulations in which the spatial distribution of runoff was varied. The measured valley head distributions were compared to predictions from landscape evolution models for two end-member hypotheses: (a) a warm wet climate that supported spatially distributed precipitation, and (b) surface runoff from ice cap margins, as envisioned by the Late Noachian Icy Highland model (LNIH). The observed elevation distribution in valley heads is consistent with the prediction of precipitation-fed models, and inconsistent with models in which runoff derives exclusively from a single line-source of high-elevation ice-melt. The results support the view that it is unlikely for ice caps to be the sole source of water and are consistent with the hypothesis that precipitation significantly contributed to valley network formation on ancient Mars.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008637","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Large dendritic valley networks observed on Mars present a paleoclimate paradox. Geologic observations of Noachian units on Mars reveal a global extent of valley networks, which are believed to have been formed through incisions made by flowing water. However, most climate models predict global surface temperatures too far below the freezing point of water to support an active hydrological system. Conflicting observations and models have led to disparate theories for the climate of early Mars. In this work, we surveyed a large region of the cratered southern highlands to identify the location, elevation, and distribution of observed valley heads. These valley head locations were compared to landscape evolution simulations in which the spatial distribution of runoff was varied. The measured valley head distributions were compared to predictions from landscape evolution models for two end-member hypotheses: (a) a warm wet climate that supported spatially distributed precipitation, and (b) surface runoff from ice cap margins, as envisioned by the Late Noachian Icy Highland model (LNIH). The observed elevation distribution in valley heads is consistent with the prediction of precipitation-fed models, and inconsistent with models in which runoff derives exclusively from a single line-source of high-elevation ice-melt. The results support the view that it is unlikely for ice caps to be the sole source of water and are consistent with the hypothesis that precipitation significantly contributed to valley network formation on ancient Mars.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.