{"title":"Optimizing Enzyme-Assisted Hydrolysis for Enhanced Phytochemical, Functional, and Nutritional Properties of Rapeseed (Brassica napus) Bee Pollen using Response Surface Methodology (RSM)","authors":"Anamika Sharma, Avinash Thakur, Vikas Nanda","doi":"10.1007/s11483-025-09960-z","DOIUrl":null,"url":null,"abstract":"<div><p>The research represents first scientific exploration into pectinase-assisted enzymatic hydrolysis of bee pollen, targeting its structurally resilient exine and intine layers. The disruption of these stable layers is crucial in promoting the nutrient release (amino acids, bioactive compounds, and minerals) and potentially broadening its applicability in numerous food formulations. Response surface methodology ascertained that optimal parameters for effectively disintegrating bee pollen cell walls are an enzyme concentration of 0.26%, a pH of 4.6, a temperature of 48.7℃ and hydrolysis time of 12 h with protein dispersibility index, wall-breaking rate, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and total phenolic content as the response variables. Furthermore, the artificial neural network model (R<sup>2</sup> = 0.99) successfully validated the experimental data obtained from response surface methodology, ensuring robust predictive accuracy. The scanning electron micrographs of pectinase optimized bee pollen (PEOP) demonstrated complete disruption of cell wall. Subsequent analysis demonstrated a marked increase in crude lipid content (12.43 ± 0.19%), protein (32.14 ± 0.28%), water holding capacity (1.95 ± 0.02%), emulsifying activity (65.58 ± 1.35%) compared to untreated bee pollen. Significant increase was also observed in essential amino acids (1.5 times), minerals (1.1 times), in vitro digestibility of PEOP with reduced thermal stability. Minimum alterations in functional group and degree of crystallinity confirms the integrity of the PEOP, ensuring its suitability as a functional food supplement. Therefore, the results strongly establish that pectinase hydrolysis is a productive approach to disrupt bee pollen cell wall for maximising the nutrient release, and bioavailability hence, paving the way for the utilization of fragmented nutrient-rich bee pollen in diverse food applications.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-025-09960-z","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The research represents first scientific exploration into pectinase-assisted enzymatic hydrolysis of bee pollen, targeting its structurally resilient exine and intine layers. The disruption of these stable layers is crucial in promoting the nutrient release (amino acids, bioactive compounds, and minerals) and potentially broadening its applicability in numerous food formulations. Response surface methodology ascertained that optimal parameters for effectively disintegrating bee pollen cell walls are an enzyme concentration of 0.26%, a pH of 4.6, a temperature of 48.7℃ and hydrolysis time of 12 h with protein dispersibility index, wall-breaking rate, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and total phenolic content as the response variables. Furthermore, the artificial neural network model (R2 = 0.99) successfully validated the experimental data obtained from response surface methodology, ensuring robust predictive accuracy. The scanning electron micrographs of pectinase optimized bee pollen (PEOP) demonstrated complete disruption of cell wall. Subsequent analysis demonstrated a marked increase in crude lipid content (12.43 ± 0.19%), protein (32.14 ± 0.28%), water holding capacity (1.95 ± 0.02%), emulsifying activity (65.58 ± 1.35%) compared to untreated bee pollen. Significant increase was also observed in essential amino acids (1.5 times), minerals (1.1 times), in vitro digestibility of PEOP with reduced thermal stability. Minimum alterations in functional group and degree of crystallinity confirms the integrity of the PEOP, ensuring its suitability as a functional food supplement. Therefore, the results strongly establish that pectinase hydrolysis is a productive approach to disrupt bee pollen cell wall for maximising the nutrient release, and bioavailability hence, paving the way for the utilization of fragmented nutrient-rich bee pollen in diverse food applications.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.