Roger Arnau, Jose M. Calabuig, Enrique A. Sánchez-Pérez
{"title":"Lattice Lipschitz operators on \\(C(K)-\\) spaces","authors":"Roger Arnau, Jose M. Calabuig, Enrique A. Sánchez-Pérez","doi":"10.1007/s43034-025-00426-4","DOIUrl":null,"url":null,"abstract":"<div><p>Given a Banach lattice <i>L</i>, the space of lattice Lipschitz operators on <i>L</i> has been introduced as a natural Lipschitz generalization of the linear notions of diagonal operator and multiplication operator on Banach function lattices. It is a particular space of superposition operators on Banach lattices. Motivated by certain procedures in Reinforcement Learning based on McShane–Whitney extensions of Lipschitz maps, this class has proven to be useful also in the classical context of Mathematical Analysis. In this paper, we discuss the properties of such operators when defined on spaces of continuous functions, focusing attention on the functional bounds for the pointwise Lipschitz inequalities defining the lattice Lipschitz operators, the representation theorems for these operators as vector-valued functions, and the corresponding dual spaces. Finally, and with possible applications in Artificial Intelligence in mind, we provide a McShane–Whitney extension theorem for these operators.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"16 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-025-00426-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-025-00426-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a Banach lattice L, the space of lattice Lipschitz operators on L has been introduced as a natural Lipschitz generalization of the linear notions of diagonal operator and multiplication operator on Banach function lattices. It is a particular space of superposition operators on Banach lattices. Motivated by certain procedures in Reinforcement Learning based on McShane–Whitney extensions of Lipschitz maps, this class has proven to be useful also in the classical context of Mathematical Analysis. In this paper, we discuss the properties of such operators when defined on spaces of continuous functions, focusing attention on the functional bounds for the pointwise Lipschitz inequalities defining the lattice Lipschitz operators, the representation theorems for these operators as vector-valued functions, and the corresponding dual spaces. Finally, and with possible applications in Artificial Intelligence in mind, we provide a McShane–Whitney extension theorem for these operators.
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.