{"title":"Investigating ethyl laurate and 2-alkanol systems: Application of significant structure theory","authors":"Mohammad Almasi","doi":"10.1016/j.jct.2025.107502","DOIUrl":null,"url":null,"abstract":"<div><div>The study examines the liquid density and viscosity behavior of ethyl laurate (EL) mixed with different 2-alkanols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) over the temperature range of 293.15 to 323.15 K, with the goal of clarifying the intermolecular interactions and deviations from ideality. Our experimental observations showed that all tested mixtures displayed positive excess molar volumes and negative viscosity deviations, implying that the forces between EL and each 2-alkanol are relatively weak. The significant structure theory was then utilized to represent the pure-component viscosities, yielding a maximum viscosity discrepancy of 1.691 % for 2-pentanol. For the binary systems, we introduced a new correlation whose calculated values aligned closely with the measurements, demonstrating a maximum variation of only 2.01 % for the EL + 2-hexanol mixture, which highlights the predictive capability of the proposed model. The performance of this model was compared to earlier models such as Nissan-Grunberg, Hind, Kendall-Monroe, Arrhenius, and other models. Our results demonstrate that the new model offers improved accuracy, albeit with more complex parameters.</div></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":"207 ","pages":"Article 107502"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961425000564","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The study examines the liquid density and viscosity behavior of ethyl laurate (EL) mixed with different 2-alkanols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) over the temperature range of 293.15 to 323.15 K, with the goal of clarifying the intermolecular interactions and deviations from ideality. Our experimental observations showed that all tested mixtures displayed positive excess molar volumes and negative viscosity deviations, implying that the forces between EL and each 2-alkanol are relatively weak. The significant structure theory was then utilized to represent the pure-component viscosities, yielding a maximum viscosity discrepancy of 1.691 % for 2-pentanol. For the binary systems, we introduced a new correlation whose calculated values aligned closely with the measurements, demonstrating a maximum variation of only 2.01 % for the EL + 2-hexanol mixture, which highlights the predictive capability of the proposed model. The performance of this model was compared to earlier models such as Nissan-Grunberg, Hind, Kendall-Monroe, Arrhenius, and other models. Our results demonstrate that the new model offers improved accuracy, albeit with more complex parameters.
期刊介绍:
The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published.
The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed.
Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered.
The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review.
Contributions of a routine nature or reporting on uncharacterised materials are not accepted.