Bruna Almeida , Luís Monteiro , Rafaela Tiengo , Artur Gil , Pedro Cabral
{"title":"Spatially explicit assessment of carbon storage and sequestration in forest ecosystems","authors":"Bruna Almeida , Luís Monteiro , Rafaela Tiengo , Artur Gil , Pedro Cabral","doi":"10.1016/j.rsase.2025.101544","DOIUrl":null,"url":null,"abstract":"<div><div>Forests play an important role in the global carbon cycle, making accurate assessments of carbon dynamics essential for effective forest management and climate change mitigation strategies. This research examines the spatiotemporal patterns of carbon storage and sequestration (CSS) in forests' aboveground biomass using satellite data, machine learning (Support Vector Machines), carbon modelling and spatial statistics. The methodology follows a two-step classification process: (i) binary forest classification and (ii) forest type classification, mapping seven forest types within two main categories - Broadleaves (<em>Quercus suber, Quercus ilex, Eucalyptus</em> sp., and other species) and Coniferous (<em>Pinus pinaster, Pinus pinea,</em> and other species). We analyzed the relationship between forest type and CSS at the Nomenclature of Territorial Units for Statistics (NUTS) III level and identified spatial clusters, outliers, and hot and cold spots of carbon sequestration at the municipal level across mainland Portugal. The broadleaved category demonstrated the highest classification accuracy in both years, decreasing slightly from 90.3 % in 2018 to 89 % in 2022, while the Coniferous group had the lowest accuracy, declining from 84.1 % in 2018 to 83.6 % in 2022. Anselin's Local Moran's I identified clusters of carbon sequestration, while the Getis-Ord Gi analysis confirmed these findings, revealing statistically significant hotspots of carbon sequestration in the northern and central regions and cold spots in the southern region. By providing insights at the sub-regional and municipal levels, this study offers a robust framework to support sustainable forest management and climate change mitigation strategies. Moreover, it can assist decision-makers in prioritizing natural capital, and developing nature-based solutions to tackle climate change and biodiversity loss.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"38 ","pages":"Article 101544"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938525000977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Forests play an important role in the global carbon cycle, making accurate assessments of carbon dynamics essential for effective forest management and climate change mitigation strategies. This research examines the spatiotemporal patterns of carbon storage and sequestration (CSS) in forests' aboveground biomass using satellite data, machine learning (Support Vector Machines), carbon modelling and spatial statistics. The methodology follows a two-step classification process: (i) binary forest classification and (ii) forest type classification, mapping seven forest types within two main categories - Broadleaves (Quercus suber, Quercus ilex, Eucalyptus sp., and other species) and Coniferous (Pinus pinaster, Pinus pinea, and other species). We analyzed the relationship between forest type and CSS at the Nomenclature of Territorial Units for Statistics (NUTS) III level and identified spatial clusters, outliers, and hot and cold spots of carbon sequestration at the municipal level across mainland Portugal. The broadleaved category demonstrated the highest classification accuracy in both years, decreasing slightly from 90.3 % in 2018 to 89 % in 2022, while the Coniferous group had the lowest accuracy, declining from 84.1 % in 2018 to 83.6 % in 2022. Anselin's Local Moran's I identified clusters of carbon sequestration, while the Getis-Ord Gi analysis confirmed these findings, revealing statistically significant hotspots of carbon sequestration in the northern and central regions and cold spots in the southern region. By providing insights at the sub-regional and municipal levels, this study offers a robust framework to support sustainable forest management and climate change mitigation strategies. Moreover, it can assist decision-makers in prioritizing natural capital, and developing nature-based solutions to tackle climate change and biodiversity loss.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems