Ebullition dominates high methane emissions globally across all lake sizes

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Jonas Stage Sø, Kenneth Thorø Martinsen, Theis Kragh, Kaj Sand-Jensen
{"title":"Ebullition dominates high methane emissions globally across all lake sizes","authors":"Jonas Stage Sø,&nbsp;Kenneth Thorø Martinsen,&nbsp;Theis Kragh,&nbsp;Kaj Sand-Jensen","doi":"10.1007/s10533-025-01233-8","DOIUrl":null,"url":null,"abstract":"<div><p>Methane is emitted from lakes by diffusion and ebullition. Methane diffusion is constrained by diffusion from sediments to water and water to the atmosphere, as well as oxidation. Methane ebullition from shallow water sediments bypasses these constraints but requires high methane production to form bubbles. We tested if ebullition dominates at high emissions with a Danish dataset and a global dataset comprising 973 measurements. Upper limits of methane diffusion were more constrained than ebullition. During periods of low total emissions, diffusive methane emissions predominated, whereas ebullition prevailed during periods of high emissions. The relative contribution of ebullition changed predictably, being 50% at 1.5–1.6 mmol m<sup>−2</sup> d<sup>−1</sup> and 75% at 5.1–6.4 mmol m<sup>−2</sup> d<sup>−1</sup> total methane emission. The probability of ebullitive flux was highly affected by the magnitude of the diffusive flux, and water temperature. Thus, when data was divided into the water temperature intervals ≤10, 10–20, and &gt;20 °C, ebullition occurred in 69, 69 and 95% of the observations, respectively, and emission increased from 0.29, 0.71 to 3.6 mmol m<sup>−2</sup> d<sup>−1</sup> between the three temperature intervals. Summed across all measurements, ebullition accounted for the majority (75–83%) of total methane emissions. Thus, to attain reliable whole-lake emission and global estimates, many ebullition measurements are required to cover their extensive spatial and temporal variability.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-025-01233-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-025-01233-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Methane is emitted from lakes by diffusion and ebullition. Methane diffusion is constrained by diffusion from sediments to water and water to the atmosphere, as well as oxidation. Methane ebullition from shallow water sediments bypasses these constraints but requires high methane production to form bubbles. We tested if ebullition dominates at high emissions with a Danish dataset and a global dataset comprising 973 measurements. Upper limits of methane diffusion were more constrained than ebullition. During periods of low total emissions, diffusive methane emissions predominated, whereas ebullition prevailed during periods of high emissions. The relative contribution of ebullition changed predictably, being 50% at 1.5–1.6 mmol m−2 d−1 and 75% at 5.1–6.4 mmol m−2 d−1 total methane emission. The probability of ebullitive flux was highly affected by the magnitude of the diffusive flux, and water temperature. Thus, when data was divided into the water temperature intervals ≤10, 10–20, and >20 °C, ebullition occurred in 69, 69 and 95% of the observations, respectively, and emission increased from 0.29, 0.71 to 3.6 mmol m−2 d−1 between the three temperature intervals. Summed across all measurements, ebullition accounted for the majority (75–83%) of total methane emissions. Thus, to attain reliable whole-lake emission and global estimates, many ebullition measurements are required to cover their extensive spatial and temporal variability.

在全球所有大小的湖泊中,沸腾主导着高甲烷排放
甲烷通过扩散和沸腾从湖泊中释放出来。甲烷的扩散受到沉积物向水和水向大气的扩散以及氧化的限制。浅水沉积物中的甲烷沸腾绕过了这些限制,但需要高甲烷产量才能形成气泡。我们用丹麦的数据集和一个包含973个测量值的全球数据集测试了在高排放时沸腾是否占主导地位。甲烷扩散的上限比沸腾更受约束。在总排放量低的时期,扩散甲烷排放占主导地位,而在高排放时期,沸腾占主导地位。在1.5 ~ 1.6 mmol m−2 d−1时,沸腾的相对贡献为50%,在5.1 ~ 6.4 mmol m−2 d−1时,沸腾的相对贡献为75%。沸腾通量的概率受扩散通量大小和水温的影响较大。因此,当数据被划分为≤10、10 - 20和>;20℃的水温区间时,分别有69%、69%和95%的观测值出现了气泡,在三个温度区间内,辐射从0.29、0.71增加到3.6 mmol m−2 d−1。综合所有测量结果,沸腾占甲烷总排放量的大部分(75-83%)。因此,为了获得可靠的全湖排放和全球估计,需要进行许多沸腾测量,以涵盖其广泛的时空变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信