Sharper insights: Adaptive ellipse-template for robust fovea localization in challenging retinal landscapes

IF 7 2区 医学 Q1 BIOLOGY
Jyoti Prakash Medhi , Nirmala S.R. , Kuntala Borah , Debasish Bhattacharjee , Samarendra Dandapat
{"title":"Sharper insights: Adaptive ellipse-template for robust fovea localization in challenging retinal landscapes","authors":"Jyoti Prakash Medhi ,&nbsp;Nirmala S.R. ,&nbsp;Kuntala Borah ,&nbsp;Debasish Bhattacharjee ,&nbsp;Samarendra Dandapat","doi":"10.1016/j.compbiomed.2025.110125","DOIUrl":null,"url":null,"abstract":"<div><div>Automated identification of retinal landmarks, particularly the fovea is crucial for diagnosing diabetic retinopathy and other ocular diseases. But accurate identification is challenging due to varying contrast, color irregularities, anatomical structure and the presence of lesions near the macula in fundus images. Existing methods often struggle to maintain accuracy in these complex conditions, particularly when lesions obscure vital regions. To overcome these limitations, this paper introduces a novel adaptive ellipse-template-based approach for fovea localization, leveraging mathematical modeling of blood vessel (BV) trajectories and optic disc (OD) positioning. Unlike traditional fixed-template model, our method dynamically adjusts the ellipse parameters based on OD diameter, ensuring a generalized and adaptable template. This flexibility enables consistent detection performance, even in challenging images with significant lesion interference. Extensive validation on ten publicly available databases, including MESSIDOR, DRIVE, DIARETDB0, DIARETDB1, HRF, IDRiD, HEIMED, ROC, GEI, and NETRALAYA, demonstrates a superior detection efficiency of 99.5%. Additionally, the method achieves a low mean Euclidean distance of 13.48 pixels with a standard deviation of 15.5 pixels between the actual and detected fovea locations, highlighting its precision and reliability. The proposed approach significantly outperforms conventional template-based and deep learning methods, particularly in lesion-rich and low-contrast conditions. It is computationally efficient, interpretable, and robust, making it a valuable tool for automated retinal image analysis in clinical settings.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"191 ","pages":"Article 110125"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525004767","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Automated identification of retinal landmarks, particularly the fovea is crucial for diagnosing diabetic retinopathy and other ocular diseases. But accurate identification is challenging due to varying contrast, color irregularities, anatomical structure and the presence of lesions near the macula in fundus images. Existing methods often struggle to maintain accuracy in these complex conditions, particularly when lesions obscure vital regions. To overcome these limitations, this paper introduces a novel adaptive ellipse-template-based approach for fovea localization, leveraging mathematical modeling of blood vessel (BV) trajectories and optic disc (OD) positioning. Unlike traditional fixed-template model, our method dynamically adjusts the ellipse parameters based on OD diameter, ensuring a generalized and adaptable template. This flexibility enables consistent detection performance, even in challenging images with significant lesion interference. Extensive validation on ten publicly available databases, including MESSIDOR, DRIVE, DIARETDB0, DIARETDB1, HRF, IDRiD, HEIMED, ROC, GEI, and NETRALAYA, demonstrates a superior detection efficiency of 99.5%. Additionally, the method achieves a low mean Euclidean distance of 13.48 pixels with a standard deviation of 15.5 pixels between the actual and detected fovea locations, highlighting its precision and reliability. The proposed approach significantly outperforms conventional template-based and deep learning methods, particularly in lesion-rich and low-contrast conditions. It is computationally efficient, interpretable, and robust, making it a valuable tool for automated retinal image analysis in clinical settings.
更清晰的见解:适应性椭圆模板稳健的中央凹定位在具有挑战性的视网膜景观
自动识别视网膜标志,特别是中央凹是诊断糖尿病视网膜病变和其他眼部疾病的关键。但由于眼底图像中对比度不同、颜色不规则、解剖结构和黄斑附近病变的存在,准确识别是具有挑战性的。现有的方法往往难以在这些复杂的条件下保持准确性,特别是当病变掩盖了重要区域时。为了克服这些限制,本文引入了一种新的基于椭圆模板的自适应中央凹定位方法,利用血管(BV)轨迹和视盘(OD)定位的数学建模。与传统的固定模板模型不同,该方法基于外径动态调整椭圆参数,保证了模板的泛化和适应性。这种灵活性使检测性能保持一致,即使在具有显著病变干扰的挑战性图像中也是如此。在包括MESSIDOR、DRIVE、DIARETDB0、DIARETDB1、HRF、IDRiD、HEIMED、ROC、GEI和NETRALAYA在内的10个公开数据库上进行了广泛的验证,显示出99.5%的卓越检测效率。此外,该方法的平均欧氏距离为13.48像素,实际与检测到的中央凹位置的标准差为15.5像素,突出了其精度和可靠性。该方法明显优于传统的基于模板和深度学习方法,特别是在病变丰富和低对比度条件下。它具有计算效率高,可解释和鲁棒性,使其成为临床环境中自动视网膜图像分析的有价值工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信