Enhancing polyp detection in endoscopy with cross-channel self-attention fusion

Q2 Health Professions
Xiaolong Liang , Shuijiao Chen , Linfeng Shu , Dechun Wang , Qilei Chen , Yu Cao , Benyuan Liu , Honggang Zhang , Xiaowei Liu
{"title":"Enhancing polyp detection in endoscopy with cross-channel self-attention fusion","authors":"Xiaolong Liang ,&nbsp;Shuijiao Chen ,&nbsp;Linfeng Shu ,&nbsp;Dechun Wang ,&nbsp;Qilei Chen ,&nbsp;Yu Cao ,&nbsp;Benyuan Liu ,&nbsp;Honggang Zhang ,&nbsp;Xiaowei Liu","doi":"10.1016/j.smhl.2025.100578","DOIUrl":null,"url":null,"abstract":"<div><div>Colorectal cancer (CRC) poses a significant global health challenge, ranking as a leading cause of cancer-related mortality. Colonoscopy, the most effective means of preventing CRC, is utilized for early detection and removal of precancerous growths. However, while there have been many efforts that utilize deep learning based approaches for automatic polyp detection, false positive rates in polyp detection during colonoscopy remain high due to the diverse characteristics of polyps and the presence of various artifacts. This paper introduces an innovative technique aimed at improving polyp detection accuracy in colonoscopy video frames. The proposed method introduces a novel framework incorporating a cross-channel self-attention fusion unit, aimed at enhancing polyp detection accuracy in endoscopic procedures. The integration of this unit proves to play an important role in refining prediction quality, resulting in more precise detection outcomes in complex medical imaging scenarios. To substantiate the effectiveness of our framework, we create an extensive private dataset comprising complete endoscopy videos, captured from diverse equipment from different manufacturers. This dataset represents realistic and intricate application scenarios, offering an authentic and effective foundation for both training and evaluating our framework. Thorough experiments and ablation studies are conducted to assess the performance of our proposed approach. The results demonstrate that our framework, featuring key technical innovations, significantly reduces false detections and achieves a higher recall rate. This underscores the remarkable effectiveness of our framework in upgrading polyp detection accuracy in real-world endoscopy procedures.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"36 ","pages":"Article 100578"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235264832500039X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) poses a significant global health challenge, ranking as a leading cause of cancer-related mortality. Colonoscopy, the most effective means of preventing CRC, is utilized for early detection and removal of precancerous growths. However, while there have been many efforts that utilize deep learning based approaches for automatic polyp detection, false positive rates in polyp detection during colonoscopy remain high due to the diverse characteristics of polyps and the presence of various artifacts. This paper introduces an innovative technique aimed at improving polyp detection accuracy in colonoscopy video frames. The proposed method introduces a novel framework incorporating a cross-channel self-attention fusion unit, aimed at enhancing polyp detection accuracy in endoscopic procedures. The integration of this unit proves to play an important role in refining prediction quality, resulting in more precise detection outcomes in complex medical imaging scenarios. To substantiate the effectiveness of our framework, we create an extensive private dataset comprising complete endoscopy videos, captured from diverse equipment from different manufacturers. This dataset represents realistic and intricate application scenarios, offering an authentic and effective foundation for both training and evaluating our framework. Thorough experiments and ablation studies are conducted to assess the performance of our proposed approach. The results demonstrate that our framework, featuring key technical innovations, significantly reduces false detections and achieves a higher recall rate. This underscores the remarkable effectiveness of our framework in upgrading polyp detection accuracy in real-world endoscopy procedures.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信