Nicola Bena , Marco Anisetti , Ernesto Damiani , Chan Yeob Yeun , Claudio A. Ardagna
{"title":"Protecting machine learning from poisoning attacks: A risk-based approach","authors":"Nicola Bena , Marco Anisetti , Ernesto Damiani , Chan Yeob Yeun , Claudio A. Ardagna","doi":"10.1016/j.cose.2025.104468","DOIUrl":null,"url":null,"abstract":"<div><div>The ever-increasing interest in and widespread diffusion of Machine Learning (ML)-based applications has driven a substantial amount of research into offensive and defensive ML. ML models can be attacked from different angles: poisoning attacks, the focus of this paper, inject maliciously crafted data points in the training set to modify the model behavior; adversarial attacks maliciously manipulate inference-time data points to fool the ML model and drive the prediction of the ML model according to the attacker’s objective. Ensemble-based techniques are among the most relevant defenses against poisoning attacks and replace the monolithic ML model with an ensemble of ML models trained on different (disjoint) subsets of the training set. They assign data points to the training sets of the models in the ensemble (routing) randomly or using a hash function, assuming that evenly distributing poisoned data points positively influences ML robustness. Our paper departs from this assumption and implements a risk-based ensemble technique where a risk management process is used to perform a smart routing of data points to the training sets. An extensive experimental evaluation demonstrates the effectiveness of the proposed approach in terms of its soundness, robustness, and performance.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"155 ","pages":"Article 104468"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404825001579","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The ever-increasing interest in and widespread diffusion of Machine Learning (ML)-based applications has driven a substantial amount of research into offensive and defensive ML. ML models can be attacked from different angles: poisoning attacks, the focus of this paper, inject maliciously crafted data points in the training set to modify the model behavior; adversarial attacks maliciously manipulate inference-time data points to fool the ML model and drive the prediction of the ML model according to the attacker’s objective. Ensemble-based techniques are among the most relevant defenses against poisoning attacks and replace the monolithic ML model with an ensemble of ML models trained on different (disjoint) subsets of the training set. They assign data points to the training sets of the models in the ensemble (routing) randomly or using a hash function, assuming that evenly distributing poisoned data points positively influences ML robustness. Our paper departs from this assumption and implements a risk-based ensemble technique where a risk management process is used to perform a smart routing of data points to the training sets. An extensive experimental evaluation demonstrates the effectiveness of the proposed approach in terms of its soundness, robustness, and performance.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.