O. Baturhan Bayraktar, Martin Grunow, Rainer Kolisch
{"title":"Dynamic reconfigurations of matrix assembly layouts","authors":"O. Baturhan Bayraktar, Martin Grunow, Rainer Kolisch","doi":"10.1016/j.ejor.2025.03.023","DOIUrl":null,"url":null,"abstract":"Traditional assembly lines have become less efficient due to increasing customization and changing demand (e.g., the trend in e-vehicles). Matrix assembly systems, in which automated guided vehicles move products between the workstations laid out on a grid, are gaining popularity. One advantage of such systems is that they are easier to reconfigure compared to traditional assembly lines. In this work, we develop a methodology for the configuration and reconfiguration of matrix assembly layouts under changing demand. The decisions consist of selecting active stations, task assignments, and product flows for each period of a multi-period planning horizon. The three objective functions minimize the number of active stations, the number of reconfigurations, and the total flow distance. We formulate a lexicographic multi-objective mixed-integer linear programming model for this problem. We develop an exact solution approach using period-based, layout-based, and Benders decompositions. For our numerical tests, we adapt standard instances from the literature. In terms of computational performance, our approach is, on average, 53.3% faster than the original MIP solved with a commercial solver for practice-size instances. Our insights reveal that matrix layouts with dynamic reconfigurations enhance the active number of stations by 31.3% and reduce flow distances by 12.4% on average, compared to static layouts.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"5 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2025.03.023","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Traditional assembly lines have become less efficient due to increasing customization and changing demand (e.g., the trend in e-vehicles). Matrix assembly systems, in which automated guided vehicles move products between the workstations laid out on a grid, are gaining popularity. One advantage of such systems is that they are easier to reconfigure compared to traditional assembly lines. In this work, we develop a methodology for the configuration and reconfiguration of matrix assembly layouts under changing demand. The decisions consist of selecting active stations, task assignments, and product flows for each period of a multi-period planning horizon. The three objective functions minimize the number of active stations, the number of reconfigurations, and the total flow distance. We formulate a lexicographic multi-objective mixed-integer linear programming model for this problem. We develop an exact solution approach using period-based, layout-based, and Benders decompositions. For our numerical tests, we adapt standard instances from the literature. In terms of computational performance, our approach is, on average, 53.3% faster than the original MIP solved with a commercial solver for practice-size instances. Our insights reveal that matrix layouts with dynamic reconfigurations enhance the active number of stations by 31.3% and reduce flow distances by 12.4% on average, compared to static layouts.
期刊介绍:
The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.