{"title":"Critical Behavior and Magnetocaloric Properties of LPSMO Nanocrystals via Landau Theory","authors":"Mohamed Hsini, Amel Haouas, Fatma Aouaini","doi":"10.1002/adts.202500092","DOIUrl":null,"url":null,"abstract":"This study presents a computational methodology that combines the Landau theory with the Arrott–Noakes equation. Through an innovative formulation, simulations are performed to investigate the magnetic entropy change, <span data-altimg=\"/cms/asset/cd662fb7-56ab-4e54-b7eb-1ec8f99ace99/adts202500092-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"6\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"6\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,4\" data-semantic-content=\"5\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0001\" display=\"inline\" location=\"graphic/adts202500092-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"6\" data-semantic-content=\"0\" data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,4\" data-semantic-content=\"5\" data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Δ</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"6\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><msub data-semantic-=\"\" data-semantic-children=\"2,3\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">S</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">M</mi></msub></mrow></mrow>$ - {{\\Delta}}{{\\mathrm{S}}_{\\mathrm{M}}}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, in a disordered ferromagnetic system. The theoretical framework is applied to analyze the critical behavior using experimental isothermal magnetization data <span data-altimg=\"/cms/asset/c63123c4-5b79-47bd-8127-08441328d41a/adts202500092-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"7\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,7\" data-semantic-content=\"8,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"upper M left parenthesis upper H comma upper T right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"5\" data-semantic-content=\"1,6\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2,3,4\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0002\" display=\"inline\" location=\"graphic/adts202500092-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,7\" data-semantic-content=\"8,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper M left parenthesis upper H comma upper T right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">M</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"5\" data-semantic-content=\"1,6\" data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"2,3,4\" data-semantic-content=\"3\" data-semantic-parent=\"7\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">H</mi><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">T</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$M( {H, T} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> of (La<sub>1–x</sub>Pr<sub>x</sub>)<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) nanocrystalline perovskites. Initially, the critical exponents (<span data-altimg=\"/cms/asset/cfa3f077-5270-4502-8d48-7052012b33d9/adts202500092-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"8\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0003.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"gamma\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0003\" display=\"inline\" location=\"graphic/adts202500092-math-0003.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"gamma\" data-semantic-type=\"identifier\">γ</mi>$\\gamma $</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <span data-altimg=\"/cms/asset/d48e1f66-5295-44cc-a0cb-c056b5baed33/adts202500092-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"9\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0004.png\"><mjx-semantics><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"greekletter\" data-semantic-speech=\"beta\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0004\" display=\"inline\" location=\"graphic/adts202500092-math-0004.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-role=\"greekletter\" data-semantic-speech=\"beta\" data-semantic-type=\"identifier\">β</mi>$\\beta $</annotation></semantics></math></mjx-assistive-mml></mjx-container>) of these materials are determined. It is observed that the magnetic properties of the studied compounds near the phase transition deviate from the mean-field model. These critical exponents are then used to simulate isothermal <span data-altimg=\"/cms/asset/ee67138f-c4a4-47fc-ae92-f9a50102d323/adts202500092-math-0005.png\"></span><mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0005.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,7\" data-semantic-content=\"8,0\" data-semantic- data-semantic-role=\"simple function\" data-semantic-speech=\"upper M left parenthesis upper H comma upper T right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"5\" data-semantic-content=\"1,6\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"2,3,4\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0005\" display=\"inline\" location=\"graphic/adts202500092-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,7\" data-semantic-content=\"8,0\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper M left parenthesis upper H comma upper T right parenthesis\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">M</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"9\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"5\" data-semantic-content=\"1,6\" data-semantic-parent=\"9\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"2,3,4\" data-semantic-content=\"3\" data-semantic-parent=\"7\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">H</mi><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"5\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">T</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"7\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow>$M( {H, T} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and <span data-altimg=\"/cms/asset/c4b0d07a-90dd-4302-80c5-7ae9b72ad658/adts202500092-math-0006.png\"></span><mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202500092-math-0006.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"15\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M Baseline left parenthesis normal upper H comma normal upper T right parenthesis\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"16\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,13\" data-semantic-content=\"14\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"4,11\" data-semantic-content=\"12,2\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-msub data-semantic-children=\"2,3\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"4\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"9\" data-semantic-content=\"5,10\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"6,7,8\" data-semantic-content=\"7\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\" rspace=\"3\" style=\"margin-left: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202500092:adts202500092-math-0006\" display=\"inline\" location=\"graphic/adts202500092-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"15\" data-semantic-content=\"0\" data-semantic-role=\"negative\" data-semantic-speech=\"minus normal upper Delta normal upper S Subscript normal upper M Baseline left parenthesis normal upper H comma normal upper T right parenthesis\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"16\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"1,13\" data-semantic-content=\"14\" data-semantic-parent=\"16\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"15\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">Δ</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"15\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"4,11\" data-semantic-content=\"12,2\" data-semantic-parent=\"15\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><msub data-semantic-=\"\" data-semantic-children=\"2,3\" data-semantic-parent=\"13\" data-semantic-role=\"simple function\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-operator=\"appl\" data-semantic-parent=\"4\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\" mathvariant=\"normal\">S</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">M</mi></msub><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"13\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"></mo><mrow data-semantic-=\"\" data-semantic-children=\"9\" data-semantic-content=\"5,10\" data-semantic-parent=\"13\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mrow data-semantic-=\"\" data-semantic-children=\"6,7,8\" data-semantic-content=\"7\" data-semantic-parent=\"11\" data-semantic-role=\"sequence\" data-semantic-type=\"punctuated\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">H</mi><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"9\" data-semantic-role=\"comma\" data-semantic-type=\"punctuation\">,</mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">T</mi></mrow><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"11\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow></mrow></mrow>$ - {\\bf{\\Delta }}{{\\mathrm{S}}_{\\mathrm{M}}}( {{\\mathrm{H}},{\\mathrm{T}}} )$</annotation></semantics></math></mjx-assistive-mml></mjx-container> curves.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500092","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a computational methodology that combines the Landau theory with the Arrott–Noakes equation. Through an innovative formulation, simulations are performed to investigate the magnetic entropy change, , in a disordered ferromagnetic system. The theoretical framework is applied to analyze the critical behavior using experimental isothermal magnetization data of (La1–xPrx)0.7Sr0.3MnO3 (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) nanocrystalline perovskites. Initially, the critical exponents ( and ) of these materials are determined. It is observed that the magnetic properties of the studied compounds near the phase transition deviate from the mean-field model. These critical exponents are then used to simulate isothermal and curves.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics