Atomic Neural Network for Calculation of Solvation Free Energies in Organic Solvents

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sergei F. Vyboishchikov
{"title":"Atomic Neural Network for Calculation of Solvation Free Energies in Organic Solvents","authors":"Sergei F. Vyboishchikov","doi":"10.1002/jcc.70104","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper introduces AtomicESE, an artificial neural network for calculating solvation-free energies Δ<i>G</i>°<sub>solv</sub> of molecules in organic solvents. AtomicESE calculates Δ<i>G</i>°<sub>solv</sub> by summing atomic contributions, each evaluated by a dense neural network. This atomic network uses 13 physically relevant input features, comprising six local atomic features, two global charge-related molecular properties, and five solvent-specific properties. For neutral solutes, AtomicESE achieves an average RMSE below 0.6 kcal/mol, demonstrating strong performance across all solvent classes, with particularly high accuracy for aromatic, haloaromatic, alkane, and ketone solvents. AtomicESE also works reliably for ionic solutes.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 11","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70104","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces AtomicESE, an artificial neural network for calculating solvation-free energies ΔG°solv of molecules in organic solvents. AtomicESE calculates ΔG°solv by summing atomic contributions, each evaluated by a dense neural network. This atomic network uses 13 physically relevant input features, comprising six local atomic features, two global charge-related molecular properties, and five solvent-specific properties. For neutral solutes, AtomicESE achieves an average RMSE below 0.6 kcal/mol, demonstrating strong performance across all solvent classes, with particularly high accuracy for aromatic, haloaromatic, alkane, and ketone solvents. AtomicESE also works reliably for ionic solutes.

Abstract Image

计算有机溶剂溶剂化自由能的原子神经网络
本文介绍了一种用于计算有机溶剂中分子无溶剂能ΔG°solv的人工神经网络AtomicESE。AtomicESE通过求和原子贡献来计算ΔG°solv,每个原子贡献都由密集的神经网络评估。这个原子网络使用13个物理上相关的输入特征,包括6个局部原子特征、2个全局电荷相关的分子特性和5个溶剂特定的特性。对于中性溶质,AtomicESE的平均RMSE低于0.6 kcal/mol,在所有溶剂类别中都表现出强大的性能,对芳烃、卤代芳烃、烷烃和酮类溶剂具有特别高的准确性。AtomicESE同样适用于离子溶质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信