On the behavior of \(m-th\) derivatives of polynomials in bounded and unbounded regions without zero angles in weighted Lebesgue spaces

IF 1.4 3区 数学 Q1 MATHEMATICS
F. G. Abdullayev, M. Imashkyzy
{"title":"On the behavior of \\(m-th\\) derivatives of polynomials in bounded and unbounded regions without zero angles in weighted Lebesgue spaces","authors":"F. G. Abdullayev,&nbsp;M. Imashkyzy","doi":"10.1007/s13324-025-01055-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the growth of the <span>\\(m-th\\)</span> (<span>\\(m\\ge 1\\)</span>) derivatives of an arbitrary algebraic polynomial in weighted Lebesgue spaces over the whole complex plane. We first study the growth of the <span>\\(m-th\\)</span> derivatives of an arbitrary algebraic polynomial over unbounded regions of the complex plane, and then we obtain estimates for the growth of the <span>\\(m-th\\)</span> derivatives of this polynomial over the closure of the given region. Combining both estimates, we find estimates for the growth of the <span>\\(m-th\\)</span> derivatives of an arbitrary algebraic polynomial over the whole complex plane.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01055-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01055-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the growth of the \(m-th\) (\(m\ge 1\)) derivatives of an arbitrary algebraic polynomial in weighted Lebesgue spaces over the whole complex plane. We first study the growth of the \(m-th\) derivatives of an arbitrary algebraic polynomial over unbounded regions of the complex plane, and then we obtain estimates for the growth of the \(m-th\) derivatives of this polynomial over the closure of the given region. Combining both estimates, we find estimates for the growth of the \(m-th\) derivatives of an arbitrary algebraic polynomial over the whole complex plane.

论加权勒贝格空间有界和无界区域中无零角多项式的(m-th\)导数的行为
本文研究了整个复平面上加权Lebesgue空间中任意代数多项式的\(m-th\) (\(m\ge 1\))导数的增长。我们首先研究了复平面无界区域上任意代数多项式的\(m-th\)导数的增长,然后我们得到了该多项式的\(m-th\)导数在给定区域闭包上的增长估计。结合这两种估计,我们找到了整个复平面上任意代数多项式\(m-th\)导数增长的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信