Uniqueness of Lagrangians in \(T^*{\mathbb {R}}P^2\)

IF 0.5 Q3 MATHEMATICS
Nikolas Adaloglou
{"title":"Uniqueness of Lagrangians in \\(T^*{\\mathbb {R}}P^2\\)","authors":"Nikolas Adaloglou","doi":"10.1007/s40316-024-00238-3","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new and simpler proof of the fact that any Lagrangian <span>\\({\\mathbb {R}}P^2\\)</span> in <span>\\(T^*{\\mathbb {R}}P^2\\)</span> is Hamiltonian isotopic to the zero section. Our proof mirrors the one given by Li and Wu for the Hamiltonian uniqueness of Lagrangians in <span>\\(T^*S^2\\)</span>, using surgery to turn Lagrangian spheres into symplectic ones. The main novel contribution is a detailed proof of the folklore fact that the complement of a symplectic quadric in <span>\\({\\mathbb {C}}P^2\\)</span> can be identified with the unit cotangent disc bundle of <span>\\({\\mathbb {R}}P^2\\)</span>.</p></div>","PeriodicalId":42753,"journal":{"name":"Annales Mathematiques du Quebec","volume":"49 1","pages":"215 - 222"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematiques du Quebec","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40316-024-00238-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new and simpler proof of the fact that any Lagrangian \({\mathbb {R}}P^2\) in \(T^*{\mathbb {R}}P^2\) is Hamiltonian isotopic to the zero section. Our proof mirrors the one given by Li and Wu for the Hamiltonian uniqueness of Lagrangians in \(T^*S^2\), using surgery to turn Lagrangian spheres into symplectic ones. The main novel contribution is a detailed proof of the folklore fact that the complement of a symplectic quadric in \({\mathbb {C}}P^2\) can be identified with the unit cotangent disc bundle of \({\mathbb {R}}P^2\).

拉格朗日量的唯一性 \(T^*{\mathbb {R}}P^2\)
我们提出了一个新的、更简单的证明,证明\(T^*{\mathbb {R}}P^2\)中任何拉格朗日方程\({\mathbb {R}}P^2\)都是零段的哈密顿同位素。我们的证明反映了Li和Wu在\(T^*S^2\)中对拉格朗日的哈密顿唯一性给出的证明,使用外科手术将拉格朗日球变成辛球。主要的新颖贡献是详细证明了民间传说中的事实,即\({\mathbb {C}}P^2\)中辛二次曲线的补可以与\({\mathbb {R}}P^2\)的单位共切盘束相识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
19
期刊介绍: The goal of the Annales mathématiques du Québec (formerly: Annales des sciences mathématiques du Québec) is to be a high level journal publishing articles in all areas of pure mathematics, and sometimes in related fields such as applied mathematics, mathematical physics and computer science. Papers written in French or English may be submitted to one of the editors, and each published paper will appear with a short abstract in both languages. History: The journal was founded in 1977 as „Annales des sciences mathématiques du Québec”, in 2013 it became a Springer journal under the name of “Annales mathématiques du Québec”. From 1977 to 2018, the editors-in-chief have respectively been S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea. Les Annales mathématiques du Québec (anciennement, les Annales des sciences mathématiques du Québec) se veulent un journal de haut calibre publiant des travaux dans toutes les sphères des mathématiques pures, et parfois dans des domaines connexes tels les mathématiques appliquées, la physique mathématique et l''informatique. On peut soumettre ses articles en français ou en anglais à l''éditeur de son choix, et les articles acceptés seront publiés avec un résumé court dans les deux langues. Histoire: La revue québécoise “Annales des sciences mathématiques du Québec” était fondée en 1977 et est devenue en 2013 une revue de Springer sous le nom Annales mathématiques du Québec. De 1977 à 2018, les éditeurs en chef ont respectivement été S. Dubuc, R. Cléroux, G. Labelle, I. Assem, C. Levesque, D. Jakobson, O. Cornea.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信