{"title":"NOVEL DENTAL LOCKING INTERFACE DESIGN FOR MINIMUM STRESS SHIELDING IN DENTAL IMPLANTS AND ITS VALIDATION USING FEM AND ANN","authors":"S. Srivastava, S.K. Sarangi","doi":"10.1134/S0021894424060130","DOIUrl":null,"url":null,"abstract":"<p>One of the most important factors determining dental implants’ longevity and effectiveness is the connection between the abutment and the implant. This investigation focuses on studying how bone shielding is affected by the interface between dental implants and abutments. In a computer-aided design (CAD) environment, three dental implant connectors and carbon-reinforced PEEK are modeled. A comparison is made between the modern dental implant locking mechanism and the more traditional internal hexagonal and conical abutment interfaces to evaluate the former’s effectiveness. ANN is employed in the process of developing the precise modulus of the dental implant material for the human jaw. Studying the von Mises stress and deformation of dental interface materials makes it possible to discover a unique locking system that exhibits the highest von Mises stress and deformation, virtually on par with the bone. However, the carbon-reinforced PEEK composite material demonstrates high bone shielding.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"65 6","pages":"1154 - 1168"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894424060130","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most important factors determining dental implants’ longevity and effectiveness is the connection between the abutment and the implant. This investigation focuses on studying how bone shielding is affected by the interface between dental implants and abutments. In a computer-aided design (CAD) environment, three dental implant connectors and carbon-reinforced PEEK are modeled. A comparison is made between the modern dental implant locking mechanism and the more traditional internal hexagonal and conical abutment interfaces to evaluate the former’s effectiveness. ANN is employed in the process of developing the precise modulus of the dental implant material for the human jaw. Studying the von Mises stress and deformation of dental interface materials makes it possible to discover a unique locking system that exhibits the highest von Mises stress and deformation, virtually on par with the bone. However, the carbon-reinforced PEEK composite material demonstrates high bone shielding.
期刊介绍:
Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.