Kai Zhao , Jiaxiang Yang , Yu Song , Zhihui Yu , Jun Zhao , Lijing Sun , Chunling Yu , Feng Zhang
{"title":"Nanoarchitectonics of hierarchical porous carbon derived from starch for high-performance supercapacitors","authors":"Kai Zhao , Jiaxiang Yang , Yu Song , Zhihui Yu , Jun Zhao , Lijing Sun , Chunling Yu , Feng Zhang","doi":"10.1016/j.cplett.2025.142093","DOIUrl":null,"url":null,"abstract":"<div><div>Three-dimensional hierarchical porous carbons were prepared from starch employing a simple template-assisted approach. Adjusting the amount of Ni(CH<sub>3</sub>COO)<sub>2</sub>·4H<sub>2</sub>O and NaCl can control the specific surface area, porous structure and graphitization degree of the carbon materials, which have an impact on the electrochemical performance of the materials using as electrode materials for supercapacitors. The carbon materials present a specific capacitance of 267.3 F⋅g<sup>−1</sup> at a current density of 2 A⋅g<sup>−1</sup>. The described approach represents an innovative and potentially feasible solution for future large-scale production of porous carbon electrodes with excellent electrochemical performance for high-performance supercapacitors.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"870 ","pages":"Article 142093"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261425002337","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional hierarchical porous carbons were prepared from starch employing a simple template-assisted approach. Adjusting the amount of Ni(CH3COO)2·4H2O and NaCl can control the specific surface area, porous structure and graphitization degree of the carbon materials, which have an impact on the electrochemical performance of the materials using as electrode materials for supercapacitors. The carbon materials present a specific capacitance of 267.3 F⋅g−1 at a current density of 2 A⋅g−1. The described approach represents an innovative and potentially feasible solution for future large-scale production of porous carbon electrodes with excellent electrochemical performance for high-performance supercapacitors.
期刊介绍:
Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage.
Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.