Dynamic and static Lagrange multiplier μ based Bayesian CP factorization with orthogonal factors: Theory and applications

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jing Zhou, Zhichao Zhang
{"title":"Dynamic and static Lagrange multiplier μ based Bayesian CP factorization with orthogonal factors: Theory and applications","authors":"Jing Zhou,&nbsp;Zhichao Zhang","doi":"10.1016/j.sigpro.2025.110045","DOIUrl":null,"url":null,"abstract":"<div><div>The existing <span><math><mi>μ</mi></math></span>-Singular Value Decomposition (<span><math><mi>μ</mi></math></span>-SVD) denoising algorithm is capable of extracting gear fault information under strong noise conditions. However, this algorithm is only applicable to two-dimensional real-valued data and lacks a mechanism for implementing Automatic Rank Determination (ARD) in high-dimensional data. In this paper, a Bayesian and Tensor treatment of <span><math><mi>μ</mi></math></span>-SVD is employed to enable ARD. To further investigate the impact of the Lagrange multiplier <span><math><mi>μ</mi></math></span> on the proposed <span><math><mi>μ</mi></math></span>-variational Bayesian (<span><math><mi>μ</mi></math></span>-VB) algorithm, we examine its performance from both static and dynamic perspectives. Simulation results demonstrate that the <span><math><mi>μ</mi></math></span>-VB algorithm achieves ARD and performs well in noise reduction. Further the <span><math><mi>μ</mi></math></span>-VB algorithm performs better in wireless communication and linear image coding across numerical domains, tensor sizes, orthogonal factors, and <span><math><mi>μ</mi></math></span> settings.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"236 ","pages":"Article 110045"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425001598","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The existing μ-Singular Value Decomposition (μ-SVD) denoising algorithm is capable of extracting gear fault information under strong noise conditions. However, this algorithm is only applicable to two-dimensional real-valued data and lacks a mechanism for implementing Automatic Rank Determination (ARD) in high-dimensional data. In this paper, a Bayesian and Tensor treatment of μ-SVD is employed to enable ARD. To further investigate the impact of the Lagrange multiplier μ on the proposed μ-variational Bayesian (μ-VB) algorithm, we examine its performance from both static and dynamic perspectives. Simulation results demonstrate that the μ-VB algorithm achieves ARD and performs well in noise reduction. Further the μ-VB algorithm performs better in wireless communication and linear image coding across numerical domains, tensor sizes, orthogonal factors, and μ settings.
基于动态和静态拉格朗日乘子μ的正交因子贝叶斯CP分解:理论与应用
现有的μ-奇异值分解(μ-SVD)去噪算法能够在强噪声条件下提取齿轮故障信息。然而,该算法仅适用于二维实值数据,缺乏在高维数据中实现自动Rank Determination (ARD)的机制。本文采用μ-SVD的贝叶斯和张量处理来实现ARD。为了进一步研究拉格朗日乘子μ对μ-变分贝叶斯(μ- vb)算法的影响,我们从静态和动态两个角度考察了μ-变分贝叶斯算法的性能。仿真结果表明,μ-VB算法达到了ARD,并具有良好的降噪效果。此外,μ- vb算法在跨数值域、张量大小、正交因子和μ设置的无线通信和线性图像编码中表现更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信