Chao Zhou , Lixing Liu , Yurong He, Miaoqin Chen, Xudong Gao, Feng Jiang, Yanzhao Li
{"title":"Low insertion loss RF MEMS switches fabricated on glass substrates of G2.5 size using TFT display compatible process","authors":"Chao Zhou , Lixing Liu , Yurong He, Miaoqin Chen, Xudong Gao, Feng Jiang, Yanzhao Li","doi":"10.1016/j.jmapro.2025.04.007","DOIUrl":null,"url":null,"abstract":"<div><div>This work demonstrated the first fabrication of resistive RF MEMS switches on G2.5 glass substrates via thin-film transistor (TFT) display compatible processes. By replacing gold with a copper cantilever architecture, we achieved low insertion loss (<span><math><mo><</mo></math></span>0.55 dB from DC to 6 GHz) while resolving the inherent trade-off between actuation voltage and switching speed. The optimized design attained a response time of <span><math><mrow><mn>17</mn><mspace></mspace><mi>μ</mi><mi>s</mi></mrow></math></span> at 22 V driving voltage, with isolation exceeding 28 dB. The display process-compatible planarization and sacrificial layer techniques eliminated conventional Micro-Electro-Mechanical System (MEMS) processing while maintaining insertion loss below 0.55 dB. The successful convergence of copper-based MEMS functionality with display industry infrastructure established a transformative platform for cost-sensitive 5G applications, where traditional silicon-based approaches faced limitations in scalability and integration density.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"145 ","pages":"Pages 1-10"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612525003901","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
This work demonstrated the first fabrication of resistive RF MEMS switches on G2.5 glass substrates via thin-film transistor (TFT) display compatible processes. By replacing gold with a copper cantilever architecture, we achieved low insertion loss (0.55 dB from DC to 6 GHz) while resolving the inherent trade-off between actuation voltage and switching speed. The optimized design attained a response time of at 22 V driving voltage, with isolation exceeding 28 dB. The display process-compatible planarization and sacrificial layer techniques eliminated conventional Micro-Electro-Mechanical System (MEMS) processing while maintaining insertion loss below 0.55 dB. The successful convergence of copper-based MEMS functionality with display industry infrastructure established a transformative platform for cost-sensitive 5G applications, where traditional silicon-based approaches faced limitations in scalability and integration density.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.