Cosmic (super)strings with a time-varying tension

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Filippo Revello and Gonzalo Villa
{"title":"Cosmic (super)strings with a time-varying tension","authors":"Filippo Revello and Gonzalo Villa","doi":"10.1088/1475-7516/2025/04/049","DOIUrl":null,"url":null,"abstract":"Cosmic (super)strings offer promising ways to test ideas about the early universe and physics at high energies. While in field theory constructions their tension is usually assumed to be constant (or at most slowly-varying), this is often not the case in the context of String Theory. Indeed, the tensions of both fundamental and field theory strings within a string compactification depend on the expectation values of the moduli, which in turn can vary with time. We discuss how the evolution of a cosmic string network changes with a time-dependent tension, both for long-strings and closed loops, by providing an appropriate generalisation of the Velocity One Scale (VOS) model and its implications. The resulting phenomenology is very rich, exhibiting novel features such as growing loops, percolation and a radiation-like behaviour of the long string network. We conclude with a few remarks on the impact for gravitational wave emission.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"9 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/04/049","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cosmic (super)strings offer promising ways to test ideas about the early universe and physics at high energies. While in field theory constructions their tension is usually assumed to be constant (or at most slowly-varying), this is often not the case in the context of String Theory. Indeed, the tensions of both fundamental and field theory strings within a string compactification depend on the expectation values of the moduli, which in turn can vary with time. We discuss how the evolution of a cosmic string network changes with a time-dependent tension, both for long-strings and closed loops, by providing an appropriate generalisation of the Velocity One Scale (VOS) model and its implications. The resulting phenomenology is very rich, exhibiting novel features such as growing loops, percolation and a radiation-like behaviour of the long string network. We conclude with a few remarks on the impact for gravitational wave emission.
具有时变张力的宇宙(超级)弦
宇宙(超)弦提供了很有希望的方法来测试关于早期宇宙和高能物理的想法。虽然在场论结构中,它们的张力通常被假设为恒定的(或者最多是缓慢变化的),但在弦论的背景下,情况往往不是这样。事实上,在弦紧化中,基本弦和场论弦的张力都取决于模的期望值,而模的期望值又会随时间变化。我们通过提供速度一尺度(VOS)模型及其含义的适当推广,讨论了宇宙弦网络的演化如何随时间依赖的张力而变化,包括长弦和闭环。由此产生的现象学非常丰富,表现出新的特征,如生长环、渗透和长弦网络的辐射行为。最后,我们对引力波发射的影响作了一些评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信