Decoder-Only Image Registration

Xi Jia;Wenqi Lu;Xinxing Cheng;Jinming Duan
{"title":"Decoder-Only Image Registration","authors":"Xi Jia;Wenqi Lu;Xinxing Cheng;Jinming Duan","doi":"10.1109/TMI.2025.3562056","DOIUrl":null,"url":null,"abstract":"In unsupervised medical image registration, encoder-decoder architectures are widely used to predict dense, full-resolution displacement fields from paired images. Despite their popularity, we question the necessity of making both the encoder and decoder learnable. To address this, we propose LessNet, a simplified network architecture with only a learnable decoder, while completely omitting a learnable encoder. Instead, LessNet replaces the encoder with simple, handcrafted features, eliminating the need to optimize encoder parameters. This results in a compact, efficient, and decoder-only architecture for 3D medical image registration. We evaluate our decoder-only LessNet on five registration tasks: 1) inter-subject brain registration using the OASIS-1 dataset, 2) atlas-based brain registration using the IXI dataset, 3) cardiac ES-ED registration using the ACDC dataset, 4) inter-subject abdominal MR registration using the CHAOS dataset, and 5) multi-study, multi-site brain registration using images from 13 public datasets. Our results demonstrate that LessNet can effectively and efficiently learn both dense displacement and diffeomorphic deformation fields. Furthermore, our decoder-only LessNet can achieve comparable registration performance to benchmarking methods such as VoxelMorph and TransMorph, while requiring significantly fewer computational resources. Our code and pre-trained models are available at <uri>https://github.com/xi-jia/LessNet</uri>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 8","pages":"3356-3369"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10967349/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In unsupervised medical image registration, encoder-decoder architectures are widely used to predict dense, full-resolution displacement fields from paired images. Despite their popularity, we question the necessity of making both the encoder and decoder learnable. To address this, we propose LessNet, a simplified network architecture with only a learnable decoder, while completely omitting a learnable encoder. Instead, LessNet replaces the encoder with simple, handcrafted features, eliminating the need to optimize encoder parameters. This results in a compact, efficient, and decoder-only architecture for 3D medical image registration. We evaluate our decoder-only LessNet on five registration tasks: 1) inter-subject brain registration using the OASIS-1 dataset, 2) atlas-based brain registration using the IXI dataset, 3) cardiac ES-ED registration using the ACDC dataset, 4) inter-subject abdominal MR registration using the CHAOS dataset, and 5) multi-study, multi-site brain registration using images from 13 public datasets. Our results demonstrate that LessNet can effectively and efficiently learn both dense displacement and diffeomorphic deformation fields. Furthermore, our decoder-only LessNet can achieve comparable registration performance to benchmarking methods such as VoxelMorph and TransMorph, while requiring significantly fewer computational resources. Our code and pre-trained models are available at https://github.com/xi-jia/LessNet
仅解码器图像注册
在无监督医学图像配准中,编码器-解码器架构被广泛用于从成对图像中预测密集的、全分辨率的位移场。尽管它们很受欢迎,但我们质疑编码器和解码器都可学习的必要性。为了解决这个问题,我们提出了LessNet,这是一个简化的网络架构,只有一个可学习的解码器,而完全省略了一个可学习的编码器。相反,LessNet用简单的、手工制作的功能取代了编码器,消除了优化编码器参数的需要。这为3D医学图像配准提供了紧凑、高效和仅解码器的架构。我们在五个配准任务上评估了我们的仅解码器的LessNet: 1)使用OASIS-1数据集的受试者间脑配准,2)使用IXI数据集的基于地图集的脑配准,3)使用ACDC数据集的心脏ES-ED配准,4)使用CHAOS数据集的受试者间腹部MR配准,以及5)使用来自13个公共数据集的图像进行多研究、多地点脑配准。结果表明,LessNet可以有效地学习密集位移场和微分同构变形场。此外,我们的仅解码器的LessNet可以实现与VoxelMorph和TransMorph等基准方法相当的配准性能,同时所需的计算资源显着减少。我们的代码和预训练模型可在https://github.com/xi-jia/LessNet上获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信