Optimal sampling of tensor networks targeting wave function’s fast decaying tails

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-04-18 DOI:10.22331/q-2025-04-18-1714
Marco Ballarin, Pietro Silvi, Simone Montangero, Daniel Jaschke
{"title":"Optimal sampling of tensor networks targeting wave function’s fast decaying tails","authors":"Marco Ballarin, Pietro Silvi, Simone Montangero, Daniel Jaschke","doi":"10.22331/q-2025-04-18-1714","DOIUrl":null,"url":null,"abstract":"We introduce an optimal strategy to sample quantum outcomes of local measurement strings for isometric tensor network states. Our method generates samples based on an exact cumulative bounding function, without prior knowledge, in the minimal amount of tensor network contractions. The algorithm avoids sample repetition and, thus, is efficient at sampling distribution with exponentially decaying tails. We illustrate the computational advantage provided by our optimal sampling method through various numerical examples, involving condensed matter, optimization problems, and quantum circuit scenarios. Theory predicts up to an exponential speedup reducing the scaling for sampling the space up to an accumulated unknown probability $\\epsilon$ from $\\mathcal{O}(\\epsilon^{-1})$ to $\\mathcal{O}(\\log(\\epsilon^{-1}))$ for a decaying probability distribution. We confirm this in practice with over one order of magnitude speedup or multiple orders improvement in the error depending on the application. Our sampling strategy extends beyond local observables, e.g., to quantum magic.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"108 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-18-1714","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce an optimal strategy to sample quantum outcomes of local measurement strings for isometric tensor network states. Our method generates samples based on an exact cumulative bounding function, without prior knowledge, in the minimal amount of tensor network contractions. The algorithm avoids sample repetition and, thus, is efficient at sampling distribution with exponentially decaying tails. We illustrate the computational advantage provided by our optimal sampling method through various numerical examples, involving condensed matter, optimization problems, and quantum circuit scenarios. Theory predicts up to an exponential speedup reducing the scaling for sampling the space up to an accumulated unknown probability $\epsilon$ from $\mathcal{O}(\epsilon^{-1})$ to $\mathcal{O}(\log(\epsilon^{-1}))$ for a decaying probability distribution. We confirm this in practice with over one order of magnitude speedup or multiple orders improvement in the error depending on the application. Our sampling strategy extends beyond local observables, e.g., to quantum magic.
针对波函数快速衰减尾的张量网络的最优采样
介绍了一种对等距张量网络态的局部测量串的量子结果进行采样的最优策略。我们的方法基于精确的累积边界函数生成样本,没有先验知识,在最小量的张量网络收缩中。该算法避免了样本重复,因此,在具有指数衰减尾的抽样分布中是有效的。我们通过涉及凝聚态物质、优化问题和量子电路场景的各种数值示例说明了我们的最优采样方法提供的计算优势。理论预测了一个指数级的加速,减少了采样空间的尺度,直到一个累积的未知概率$\epsilon$,从$\mathcal{O}(\epsilon^{-1})$到$\mathcal{O}(\log(\epsilon^{-1}))$,对于一个衰减的概率分布。我们在实践中证实了这一点,根据应用程序的不同,误差提高了一个数量级以上或多个数量级。我们的采样策略超越了局部可观察对象,例如量子魔术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信