Marco Ballarin, Pietro Silvi, Simone Montangero, Daniel Jaschke
{"title":"Optimal sampling of tensor networks targeting wave function’s fast decaying tails","authors":"Marco Ballarin, Pietro Silvi, Simone Montangero, Daniel Jaschke","doi":"10.22331/q-2025-04-18-1714","DOIUrl":null,"url":null,"abstract":"We introduce an optimal strategy to sample quantum outcomes of local measurement strings for isometric tensor network states. Our method generates samples based on an exact cumulative bounding function, without prior knowledge, in the minimal amount of tensor network contractions. The algorithm avoids sample repetition and, thus, is efficient at sampling distribution with exponentially decaying tails. We illustrate the computational advantage provided by our optimal sampling method through various numerical examples, involving condensed matter, optimization problems, and quantum circuit scenarios. Theory predicts up to an exponential speedup reducing the scaling for sampling the space up to an accumulated unknown probability $\\epsilon$ from $\\mathcal{O}(\\epsilon^{-1})$ to $\\mathcal{O}(\\log(\\epsilon^{-1}))$ for a decaying probability distribution. We confirm this in practice with over one order of magnitude speedup or multiple orders improvement in the error depending on the application. Our sampling strategy extends beyond local observables, e.g., to quantum magic.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"108 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-18-1714","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce an optimal strategy to sample quantum outcomes of local measurement strings for isometric tensor network states. Our method generates samples based on an exact cumulative bounding function, without prior knowledge, in the minimal amount of tensor network contractions. The algorithm avoids sample repetition and, thus, is efficient at sampling distribution with exponentially decaying tails. We illustrate the computational advantage provided by our optimal sampling method through various numerical examples, involving condensed matter, optimization problems, and quantum circuit scenarios. Theory predicts up to an exponential speedup reducing the scaling for sampling the space up to an accumulated unknown probability $\epsilon$ from $\mathcal{O}(\epsilon^{-1})$ to $\mathcal{O}(\log(\epsilon^{-1}))$ for a decaying probability distribution. We confirm this in practice with over one order of magnitude speedup or multiple orders improvement in the error depending on the application. Our sampling strategy extends beyond local observables, e.g., to quantum magic.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.