Matias Bundgaard-Nielsen, Dirk Englund, Mikkel Heuck, Stefan Krastanov
{"title":"WaveguideQED.jl: An Efficient Framework for Simulating Non-Markovian Waveguide Quantum Electrodynamics","authors":"Matias Bundgaard-Nielsen, Dirk Englund, Mikkel Heuck, Stefan Krastanov","doi":"10.22331/q-2025-04-17-1710","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a numerical framework designed to solve problems within the emerging field of Waveguide Quantum Electrodynamics (WQED). The framework is based on collision quantum optics, where a localized quantum system interacts sequentially with individual time-bin modes. This approach provides a physically intuitive model that allows researchers familiar with tools such as QuTiP in Python, Quantum Optics Toolbox for Matlab, or<br/> in Julia to efficiently set up and execute WQED simulations. Despite its conceptual simplicity, we demonstrate the framework's robust ability to handle complex WQED scenarios. These applications include the scattering of single- or two-photon pulses by quantum emitters or cavities, as well as the exploration of non-Markovian dynamics, where emitted photons are reflected back, thereby introducing feedback mechanisms.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"30 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-17-1710","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a numerical framework designed to solve problems within the emerging field of Waveguide Quantum Electrodynamics (WQED). The framework is based on collision quantum optics, where a localized quantum system interacts sequentially with individual time-bin modes. This approach provides a physically intuitive model that allows researchers familiar with tools such as QuTiP in Python, Quantum Optics Toolbox for Matlab, or in Julia to efficiently set up and execute WQED simulations. Despite its conceptual simplicity, we demonstrate the framework's robust ability to handle complex WQED scenarios. These applications include the scattering of single- or two-photon pulses by quantum emitters or cavities, as well as the exploration of non-Markovian dynamics, where emitted photons are reflected back, thereby introducing feedback mechanisms.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.