Felix Fritzsch, Maximilian F. I. Kieler, Arnd Bäcker
{"title":"Eigenstate Correlations in Dual-Unitary Quantum Circuits: Partial Spectral Form Factor","authors":"Felix Fritzsch, Maximilian F. I. Kieler, Arnd Bäcker","doi":"10.22331/q-2025-04-17-1709","DOIUrl":null,"url":null,"abstract":"While the notion of quantum chaos is tied to random matrix spectral correlations, also eigenstate properties in chaotic systems are often assumed to be described by random matrix theory. Analytic insights into eigenstate correlations can be obtained by the recently introduced partial spectral form factor. Here, we study the partial spectral form factor in chaotic dual-unitary quantum circuits in the thermodynamic limit. We compute the latter for a finite subsystem in a brickwork circuit coupled to an infinite complement. For initial times, shorter than the subsystem's size, spatial locality and (dual) unitarity implies a constant partial spectral form factor, clearly deviating from the linear ramp of the random matrix prediction. In contrast, for larger times we prove, that the partial spectral form factor follows the random matrix result up to exponentially suppressed corrections. We supplement our exact analytical results by semi-analytic computations performed in the thermodynamic limit as well as with numerics for finite-size systems.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"10 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-04-17-1709","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While the notion of quantum chaos is tied to random matrix spectral correlations, also eigenstate properties in chaotic systems are often assumed to be described by random matrix theory. Analytic insights into eigenstate correlations can be obtained by the recently introduced partial spectral form factor. Here, we study the partial spectral form factor in chaotic dual-unitary quantum circuits in the thermodynamic limit. We compute the latter for a finite subsystem in a brickwork circuit coupled to an infinite complement. For initial times, shorter than the subsystem's size, spatial locality and (dual) unitarity implies a constant partial spectral form factor, clearly deviating from the linear ramp of the random matrix prediction. In contrast, for larger times we prove, that the partial spectral form factor follows the random matrix result up to exponentially suppressed corrections. We supplement our exact analytical results by semi-analytic computations performed in the thermodynamic limit as well as with numerics for finite-size systems.
QuantumPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍:
Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.