Jiahao Shi;Jing Chen;Hao Jiang;Xiren Miao;Lin Yang
{"title":"SKAD: A Unified Framework Guided by Structural Knowledge for Anomaly Detection of Dampers in Transmission Lines","authors":"Jiahao Shi;Jing Chen;Hao Jiang;Xiren Miao;Lin Yang","doi":"10.1109/TPWRD.2025.3558899","DOIUrl":null,"url":null,"abstract":"The dampers absorb transmission line vibration energy, reducing the vibration amplitudes of conductors. However, dampers may develop internal structural anomalies (e.g., damage to damper heads) or external positional anomalies (e.g., slippage along the conductor), both of which compromise vibration suppression efficacy. Existing anomaly detection methods focus on single anomaly type and struggle with local feature extraction. To address these limitations, this paper introduces SKAD, a unified framework guided by structural knowledge, to concurrently detect internal and external damper anomalies. SKAD encodes structural properties of dampers through four key structural points, enabling sub-pixel-level localization via a hybrid network (HRNet + GAU + SimCC). By analyzing spatial relationships and vector features of these structural points, SKAD can simultaneously detect anomalies like damage (via confidence thresholds and vector dot products) and slippage (via depth-parallelism-distance constraints) at the structural level. Experiments on a real-world dataset demonstrate SKAD outperforms object-based methods in accuracy and robustness, providing novel transmission line inspection perspectives, ensuring early anomaly detection to prevent conductor fatigue and power outages.","PeriodicalId":13498,"journal":{"name":"IEEE Transactions on Power Delivery","volume":"40 3","pages":"1743-1753"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Power Delivery","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10969573/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The dampers absorb transmission line vibration energy, reducing the vibration amplitudes of conductors. However, dampers may develop internal structural anomalies (e.g., damage to damper heads) or external positional anomalies (e.g., slippage along the conductor), both of which compromise vibration suppression efficacy. Existing anomaly detection methods focus on single anomaly type and struggle with local feature extraction. To address these limitations, this paper introduces SKAD, a unified framework guided by structural knowledge, to concurrently detect internal and external damper anomalies. SKAD encodes structural properties of dampers through four key structural points, enabling sub-pixel-level localization via a hybrid network (HRNet + GAU + SimCC). By analyzing spatial relationships and vector features of these structural points, SKAD can simultaneously detect anomalies like damage (via confidence thresholds and vector dot products) and slippage (via depth-parallelism-distance constraints) at the structural level. Experiments on a real-world dataset demonstrate SKAD outperforms object-based methods in accuracy and robustness, providing novel transmission line inspection perspectives, ensuring early anomaly detection to prevent conductor fatigue and power outages.
期刊介绍:
The scope of the Society embraces planning, research, development, design, application, construction, installation and operation of apparatus, equipment, structures, materials and systems for the safe, reliable and economic generation, transmission, distribution, conversion, measurement and control of electric energy. It includes the developing of engineering standards, the providing of information and instruction to the public and to legislators, as well as technical scientific, literary, educational and other activities that contribute to the electric power discipline or utilize the techniques or products within this discipline.