Novel Truncated Peptide Derived From circCDYL Exacerbates Cardiac Hypertrophy.

IF 16.5 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
Mengyang Li,Wei Ding,Xinyu Fang,Yu Wang,Peiyan Wang,Lin Ye,Shuo Miao,Lin Song,Xiang Ao,Qi Li,Jianxun Wang
{"title":"Novel Truncated Peptide Derived From circCDYL Exacerbates Cardiac Hypertrophy.","authors":"Mengyang Li,Wei Ding,Xinyu Fang,Yu Wang,Peiyan Wang,Lin Ye,Shuo Miao,Lin Song,Xiang Ao,Qi Li,Jianxun Wang","doi":"10.1161/circresaha.124.325573","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nCircular RNAs (circRNAs) have been gradually revealed to regulate the progression of heart disease in depth, showing their clinical significance. However, a mass of cardiac circRNAs still has not been functionally characterized. We aimed to explore the potential candidates that are involved in pathological cardiac hypertrophy.\r\n\r\nMETHODS\r\nPublic substantial RNA-sequencing data of cardiac circRNAs were utilized to search the cardiac hypertrophy-related circRNAs. Cardiomyocyte hypertrophy in vitro was induced by Ang II (angiotensin II) treatment. Mice were subjected to Ang II infusion to induce cardiac hypertrophy in vivo. Gain-of-function and loss-of-function assays were conducted to detect the effect of RNAs or proteins in cardiac hypertrophy.\r\n\r\nRESULTS\r\nA circRNA derived from the cdyl (chromodomain Y-like) gene was screened out and named circCDYL. Our results showed that the expression of circCDYL in primary rat cardiomyocytes was significantly induced by Ang II. Gain-of-function and loss-of-function assays demonstrated that circCDYL effectively promoted cardiomyocyte hypertrophy in vitro. CircCDYL could encode a ≈100-aa truncated CDYL peptide (tCDYL-100), whose sequence highly overlaps that of full-length CDYL. The translation of tCDYL-100 was activated by N6-methylation of circCDYL under prohypertrophic stimulation. tCDYL-100 fulfilled the prohypertrophic of circCDYL. Mechanistically, tCDYL-100 competed with CDYL for binding REST (RE1-silencing transcription factor) and further disrupted the formation of REST-CDYL-EHMT2 (euchromatic histone-lysine N-methyltransferase 2) transcriptional repression complex, resulting in transcriptional activation of rhoa and nppb. Silence of circCDYL in mouse hearts could inhibit Ang II-induced cardiac hypertrophy, while forced expression of tCDYL-100 could cause cardiac hypertrophy.\r\n\r\nCONCLUSIONS\r\nIn summary, our study uncovered an important circRNA-derived peptide and a regulatory mechanism on transcription mediated by N6-methyladenosine-circRNA-histone methylation in pathological cardiac hypertrophy.","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":"3 1","pages":""},"PeriodicalIF":16.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/circresaha.124.325573","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND Circular RNAs (circRNAs) have been gradually revealed to regulate the progression of heart disease in depth, showing their clinical significance. However, a mass of cardiac circRNAs still has not been functionally characterized. We aimed to explore the potential candidates that are involved in pathological cardiac hypertrophy. METHODS Public substantial RNA-sequencing data of cardiac circRNAs were utilized to search the cardiac hypertrophy-related circRNAs. Cardiomyocyte hypertrophy in vitro was induced by Ang II (angiotensin II) treatment. Mice were subjected to Ang II infusion to induce cardiac hypertrophy in vivo. Gain-of-function and loss-of-function assays were conducted to detect the effect of RNAs or proteins in cardiac hypertrophy. RESULTS A circRNA derived from the cdyl (chromodomain Y-like) gene was screened out and named circCDYL. Our results showed that the expression of circCDYL in primary rat cardiomyocytes was significantly induced by Ang II. Gain-of-function and loss-of-function assays demonstrated that circCDYL effectively promoted cardiomyocyte hypertrophy in vitro. CircCDYL could encode a ≈100-aa truncated CDYL peptide (tCDYL-100), whose sequence highly overlaps that of full-length CDYL. The translation of tCDYL-100 was activated by N6-methylation of circCDYL under prohypertrophic stimulation. tCDYL-100 fulfilled the prohypertrophic of circCDYL. Mechanistically, tCDYL-100 competed with CDYL for binding REST (RE1-silencing transcription factor) and further disrupted the formation of REST-CDYL-EHMT2 (euchromatic histone-lysine N-methyltransferase 2) transcriptional repression complex, resulting in transcriptional activation of rhoa and nppb. Silence of circCDYL in mouse hearts could inhibit Ang II-induced cardiac hypertrophy, while forced expression of tCDYL-100 could cause cardiac hypertrophy. CONCLUSIONS In summary, our study uncovered an important circRNA-derived peptide and a regulatory mechanism on transcription mediated by N6-methyladenosine-circRNA-histone methylation in pathological cardiac hypertrophy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Circulation research
Circulation research 医学-外周血管病
CiteScore
29.60
自引率
2.00%
发文量
535
审稿时长
3-6 weeks
期刊介绍: Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies. Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities. In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field. Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信