Bioinspired Adaptive Resource Scheduling for QoS in Mobile Edge Deployments

IF 1.5 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Gagandeep Kaur, Balraj Singh, Muhammad Faheem
{"title":"Bioinspired Adaptive Resource Scheduling for QoS in Mobile Edge Deployments","authors":"Gagandeep Kaur,&nbsp;Balraj Singh,&nbsp;Muhammad Faheem","doi":"10.1049/cmu2.70017","DOIUrl":null,"url":null,"abstract":"<p>As mobile edge computing (MEC) expands, efficient resource allocation and job scheduling become increasingly important. Existing techniques are frequently unable to offer acceptable quality of service (QoS), owing to inflexible scheduling algorithms and insufficient consideration of complex task and resource metrics. To overcome these constraints, this work proposes a novel adaptive vector autoregressive moving average with exogenous variables (VARMAx)-based bioinspired resource scheduling model designed specifically for mobile edge deployment. The proposed approach applies the resilient concepts of flower pollination optimisation (FPO) to map tasks to virtual machines (VMs), a technique that is sensitive to a wide variety of task variables such as makespan, deadline and CPU needs. Simultaneously, VM characteristics such as million instructions per second (MIPS), amount of cores, random access memory (RAM), availability and bandwidth are all taken into account, resulting in a more nuanced and adaptive scheduling process. Furthermore, a VARMAx model is included for task pre-emption, which assists in the recalibration of future VM capabilities, hence improving overall scheduling efficiency, particularly in real-time deployments. The suggested model outperforms existing techniques. Our results show an 8.3% reduction in makespan, a 4.5% improvement in deadline hit ratio, an 8.5% increase in energy efficiency, and a 10.4% increase in throughput. The huge improvements highlight the model's adaptability and efficacy, resulting in important advances in the field of QoS-aware task scheduling for MEC. This work represents a significant advancement in the field of effective resource scheduling, with the potential to guide future research and development efforts in mobile edge deployments.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.70017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

As mobile edge computing (MEC) expands, efficient resource allocation and job scheduling become increasingly important. Existing techniques are frequently unable to offer acceptable quality of service (QoS), owing to inflexible scheduling algorithms and insufficient consideration of complex task and resource metrics. To overcome these constraints, this work proposes a novel adaptive vector autoregressive moving average with exogenous variables (VARMAx)-based bioinspired resource scheduling model designed specifically for mobile edge deployment. The proposed approach applies the resilient concepts of flower pollination optimisation (FPO) to map tasks to virtual machines (VMs), a technique that is sensitive to a wide variety of task variables such as makespan, deadline and CPU needs. Simultaneously, VM characteristics such as million instructions per second (MIPS), amount of cores, random access memory (RAM), availability and bandwidth are all taken into account, resulting in a more nuanced and adaptive scheduling process. Furthermore, a VARMAx model is included for task pre-emption, which assists in the recalibration of future VM capabilities, hence improving overall scheduling efficiency, particularly in real-time deployments. The suggested model outperforms existing techniques. Our results show an 8.3% reduction in makespan, a 4.5% improvement in deadline hit ratio, an 8.5% increase in energy efficiency, and a 10.4% increase in throughput. The huge improvements highlight the model's adaptability and efficacy, resulting in important advances in the field of QoS-aware task scheduling for MEC. This work represents a significant advancement in the field of effective resource scheduling, with the potential to guide future research and development efforts in mobile edge deployments.

Abstract Image

移动边缘部署中基于生物启发的QoS自适应资源调度
随着移动边缘计算(MEC)的发展,高效的资源分配和作业调度变得越来越重要。由于调度算法不灵活以及对复杂任务和资源度量考虑不足,现有技术常常无法提供可接受的服务质量(QoS)。为了克服这些限制,本研究提出了一种新的基于外生变量的自适应向量自回归移动平均(VARMAx)的生物资源调度模型,专门用于移动边缘部署。所提出的方法应用了授粉优化(FPO)的弹性概念来将任务映射到虚拟机(vm),这是一种对各种任务变量(如makespan, deadline和CPU需求)敏感的技术。同时,每秒百万指令(MIPS)、内核数量、随机存取内存(RAM)、可用性和带宽等VM特性都被考虑在内,从而产生更细致和自适应的调度过程。此外,VARMAx模型还包括任务抢占,这有助于重新校准未来的VM功能,从而提高整体调度效率,特别是在实时部署中。所建议的模型优于现有的技术。我们的结果表明,完工时间减少了8.3%,最后期限命中率提高了4.5%,能源效率提高了8.5%,吞吐量提高了10.4%。这些巨大的改进突出了模型的适应性和有效性,从而在qos感知的MEC任务调度领域取得了重要进展。这项工作代表了有效资源调度领域的重大进步,有可能指导未来移动边缘部署的研究和开发工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Communications
IET Communications 工程技术-工程:电子与电气
CiteScore
4.30
自引率
6.20%
发文量
220
审稿时长
5.9 months
期刊介绍: IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth. Topics include, but are not limited to: Coding and Communication Theory; Modulation and Signal Design; Wired, Wireless and Optical Communication; Communication System Special Issues. Current Call for Papers: Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信