CEP55, A Promising Prognostic Biomarker for Pancreatic Neuroendocrine Neoplasms, Promotes Tumor Progression Through Activation of PI3K/AKT/mTOR Pathway

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yanling Xu, Mujie Ye, Ping Yu, Ping Hu, Bingyan Xue, Na He, Yi Ding, Lijun Yan, Jian'an Bai, Qiyun Tang
{"title":"CEP55, A Promising Prognostic Biomarker for Pancreatic Neuroendocrine Neoplasms, Promotes Tumor Progression Through Activation of PI3K/AKT/mTOR Pathway","authors":"Yanling Xu,&nbsp;Mujie Ye,&nbsp;Ping Yu,&nbsp;Ping Hu,&nbsp;Bingyan Xue,&nbsp;Na He,&nbsp;Yi Ding,&nbsp;Lijun Yan,&nbsp;Jian'an Bai,&nbsp;Qiyun Tang","doi":"10.1096/fj.202402990R","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Pancreatic neuroendocrine neoplasms (pNENs) exhibit significant heterogeneity, and the effectiveness of traditional classification methods in predicting tumor biological behavior and patient prognosis is limited. This study aims to reveal potential biomarkers to predict the prognosis of pNENs and explore the underlying mechanisms. Four mRNA sequencing datasets of pNENs were included in the study. CEP55, TPX2, and BIRC2 were identified as overlapping DEGs and were significantly associated with the clinical characteristics and prognosis of pNENs. The nomogram, which incorporated independent prognostic risk factors such as CEP55 expression, tumor grade, and TNM stage, demonstrated higher predictive efficiency than traditional methods. We found that knockdown of CEP55 resulted in the inhibition of proliferation, migration, and invasion in pNENs cells, while a reverse trend was observed in CEP55-overexpressing cells. Furthermore, CEP55 was found to enhance the PI3K/AKT/mTOR pathway in pNENs through its interaction with PI3K-p110. Everolimus, an mTOR inhibitor, was shown to counteract the effects of CEP55 overexpression both in vivo and in vitro. In conclusion, CEP55 may enhance the proliferation, invasion, and migration of pNENs by activating the PI3K/AKT/mTOR pathway through its interaction with PI3K. It may serve as a valuable prognostic marker and a promising therapeutic target.</p>\n </div>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402990R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pancreatic neuroendocrine neoplasms (pNENs) exhibit significant heterogeneity, and the effectiveness of traditional classification methods in predicting tumor biological behavior and patient prognosis is limited. This study aims to reveal potential biomarkers to predict the prognosis of pNENs and explore the underlying mechanisms. Four mRNA sequencing datasets of pNENs were included in the study. CEP55, TPX2, and BIRC2 were identified as overlapping DEGs and were significantly associated with the clinical characteristics and prognosis of pNENs. The nomogram, which incorporated independent prognostic risk factors such as CEP55 expression, tumor grade, and TNM stage, demonstrated higher predictive efficiency than traditional methods. We found that knockdown of CEP55 resulted in the inhibition of proliferation, migration, and invasion in pNENs cells, while a reverse trend was observed in CEP55-overexpressing cells. Furthermore, CEP55 was found to enhance the PI3K/AKT/mTOR pathway in pNENs through its interaction with PI3K-p110. Everolimus, an mTOR inhibitor, was shown to counteract the effects of CEP55 overexpression both in vivo and in vitro. In conclusion, CEP55 may enhance the proliferation, invasion, and migration of pNENs by activating the PI3K/AKT/mTOR pathway through its interaction with PI3K. It may serve as a valuable prognostic marker and a promising therapeutic target.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信