{"title":"Modeling Trigger Evolution in Biophysical Invasions Based on the Situational Choice of Hybrid Computing","authors":"A. Yu. Perevaryukha","doi":"10.1134/S1063785024700536","DOIUrl":null,"url":null,"abstract":"<p>Original modeling methods are proposed to study nonequilibrium processes in biophysics. Modifications carried out only by expanding the model dimension do not yield the desired results compared with the behavior of invasions and epidemics. According to our idea, the construction of modeling systems of nonlinear equations should be close to real abrupt changes and take into account rapid changes during evolutionary adaptation. A predictive model should take into account special properties for each individual current situation. The evolutionary process in an opposing community of organisms is never limited to the adaptation of only one component of a biophysical system. Invasions serve as a catalyst for evolution. Of particular importance to us is the special case of invasion characterized as the launch of epidemics of viruses new to the population. The coronavirus epidemic is continuing in 2024 with an autumn COVID wave in Europe, Australia, and the United States. The dynamics of morbidity in the regions is again different. New strains with signs of convergent changes, the XDV and aggressive XEC, appear. Currently, the main generator of the Omicron mutation accumulation is the wide BA.2/JN/KP branch. In 2025, the situation with the leadership of coronavirus variants will certainly change; therefore, modeling of new COVID waves will again require corrections to the models. These properties could not be described in SIRS epidemic model variants, as well as the unexpectedly re-emerging mpox outbreak. The situation with the constant presence of virus variants and local waves in the population is not the worst scenario. A repeat of the pandemic wave 5 years after the end of the epidemic and weakening of the population immunity are much worse. Invasive processes in biosystems, when species with a high reproductive parameter are introduced into a new range, trigger unpredictable and diverse nonlinear processes. In the trophic chains of biosystems, the effects of invasions spread sharply, not as in the situation with a systematic expansion of ranges. Some biophysical invasions develop rapidly in the form of an outbreak from a single peak. After an extreme maximum, a state of prolonged depression of the invasive species or chronicity of a virus in the body often develops. The crisis is caused by destruction of the invasion of its own breeding environment. Many dangerous invasive phenomena pulsate and last for decades, like the invasion of the gypsy moth in the forests of Canada. Based on the problems of biophysics, a conveniently modifiable and supplemented structure of auxiliary equations with event redefinitions is proposed. Outbreaks of reproduction of invasive species are modeled by different equations at the stages of development. To model situations of outbreaks of various insect populations, different forms of immunity regulation are combined in the model and a technique for constructing a hybrid model with complemented equations is developed. The survival equations are related to the growth equations with a synchronized algorithm for redefining the computational structure. A threshold scenario of a dangerous pulsating biophysical invasion is obtained from three equations for the loss of generations. In the scenario experiments, the hybrid model is able to describe the long-period threshold population wave effects for locally observed decaying pulsating outbreaks of aggressive species invading an adaptive environment. The outbreaks end in long fluctuations.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":"50 3","pages":"391 - 401"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063785024700536","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Original modeling methods are proposed to study nonequilibrium processes in biophysics. Modifications carried out only by expanding the model dimension do not yield the desired results compared with the behavior of invasions and epidemics. According to our idea, the construction of modeling systems of nonlinear equations should be close to real abrupt changes and take into account rapid changes during evolutionary adaptation. A predictive model should take into account special properties for each individual current situation. The evolutionary process in an opposing community of organisms is never limited to the adaptation of only one component of a biophysical system. Invasions serve as a catalyst for evolution. Of particular importance to us is the special case of invasion characterized as the launch of epidemics of viruses new to the population. The coronavirus epidemic is continuing in 2024 with an autumn COVID wave in Europe, Australia, and the United States. The dynamics of morbidity in the regions is again different. New strains with signs of convergent changes, the XDV and aggressive XEC, appear. Currently, the main generator of the Omicron mutation accumulation is the wide BA.2/JN/KP branch. In 2025, the situation with the leadership of coronavirus variants will certainly change; therefore, modeling of new COVID waves will again require corrections to the models. These properties could not be described in SIRS epidemic model variants, as well as the unexpectedly re-emerging mpox outbreak. The situation with the constant presence of virus variants and local waves in the population is not the worst scenario. A repeat of the pandemic wave 5 years after the end of the epidemic and weakening of the population immunity are much worse. Invasive processes in biosystems, when species with a high reproductive parameter are introduced into a new range, trigger unpredictable and diverse nonlinear processes. In the trophic chains of biosystems, the effects of invasions spread sharply, not as in the situation with a systematic expansion of ranges. Some biophysical invasions develop rapidly in the form of an outbreak from a single peak. After an extreme maximum, a state of prolonged depression of the invasive species or chronicity of a virus in the body often develops. The crisis is caused by destruction of the invasion of its own breeding environment. Many dangerous invasive phenomena pulsate and last for decades, like the invasion of the gypsy moth in the forests of Canada. Based on the problems of biophysics, a conveniently modifiable and supplemented structure of auxiliary equations with event redefinitions is proposed. Outbreaks of reproduction of invasive species are modeled by different equations at the stages of development. To model situations of outbreaks of various insect populations, different forms of immunity regulation are combined in the model and a technique for constructing a hybrid model with complemented equations is developed. The survival equations are related to the growth equations with a synchronized algorithm for redefining the computational structure. A threshold scenario of a dangerous pulsating biophysical invasion is obtained from three equations for the loss of generations. In the scenario experiments, the hybrid model is able to describe the long-period threshold population wave effects for locally observed decaying pulsating outbreaks of aggressive species invading an adaptive environment. The outbreaks end in long fluctuations.
期刊介绍:
Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.