Enhancing Routing Performance Through Trajectory Planning With DRL in UAV-Aided VANETs

Jingxuan Chen;Dianrun Huang;Yijie Wang;Ziping Yu;Zhongliang Zhao;Xianbin Cao;Yang Liu;Tony Q. S. Quek;Dapeng Oliver Wu
{"title":"Enhancing Routing Performance Through Trajectory Planning With DRL in UAV-Aided VANETs","authors":"Jingxuan Chen;Dianrun Huang;Yijie Wang;Ziping Yu;Zhongliang Zhao;Xianbin Cao;Yang Liu;Tony Q. S. Quek;Dapeng Oliver Wu","doi":"10.1109/TMLCN.2025.3558204","DOIUrl":null,"url":null,"abstract":"Vehicular Ad-hoc Networks (VANETs) have gained significant attention as a key enabler for intelligent transportation systems, facilitating vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Despite their potential, VANETs face critical challenges in maintaining reliable end-to-end connectivity due to their highly dynamic topology and sparse node distribution, particularly in areas with limited infrastructure coverage. Addressing these limitations is crucial for advancing the reliability and scalability of VANETs. To bridge these gaps, this work introduces a heterogeneous UAV-aided VANET framework that leverages uncrewed aerial vehicles (UAVs), also known as autonomous aerial vehicles, to enhance data transmission. The key contributions of this paper include: 1) the design of a novel adaptive dual-model routing (ADMR) protocol that operates in two modes: direct vehicle clustering for intra-cluster communication and UAV/RSU-assisted routing for inter-cluster communication; 2) the development of a modified density-based clustering algorithm (MDBSCAN) for dynamic vehicle node clustering; and 3) an improved UAV trajectory planning method based on a multi-agent soft actor-critic (MASAC) deep reinforcement learning algorithm, which optimizes network reachability. Simulation results reveal that the UAV trajectory optimization method achieves higher network reachability ratios compared to existing approaches. Also, the proposed ADMR protocol improves the packet delivery ratio (PDR) while maintaining low end-to-end latency. These findings demonstrate the potential to enhance VANET performance, while also providing valuable insights for the development of intelligent transportation systems and related fields.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"3 ","pages":"517-533"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10951108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10951108/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular Ad-hoc Networks (VANETs) have gained significant attention as a key enabler for intelligent transportation systems, facilitating vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. Despite their potential, VANETs face critical challenges in maintaining reliable end-to-end connectivity due to their highly dynamic topology and sparse node distribution, particularly in areas with limited infrastructure coverage. Addressing these limitations is crucial for advancing the reliability and scalability of VANETs. To bridge these gaps, this work introduces a heterogeneous UAV-aided VANET framework that leverages uncrewed aerial vehicles (UAVs), also known as autonomous aerial vehicles, to enhance data transmission. The key contributions of this paper include: 1) the design of a novel adaptive dual-model routing (ADMR) protocol that operates in two modes: direct vehicle clustering for intra-cluster communication and UAV/RSU-assisted routing for inter-cluster communication; 2) the development of a modified density-based clustering algorithm (MDBSCAN) for dynamic vehicle node clustering; and 3) an improved UAV trajectory planning method based on a multi-agent soft actor-critic (MASAC) deep reinforcement learning algorithm, which optimizes network reachability. Simulation results reveal that the UAV trajectory optimization method achieves higher network reachability ratios compared to existing approaches. Also, the proposed ADMR protocol improves the packet delivery ratio (PDR) while maintaining low end-to-end latency. These findings demonstrate the potential to enhance VANET performance, while also providing valuable insights for the development of intelligent transportation systems and related fields.
基于DRL的无人机辅助VANETs路径规划提高路由性能
车辆自组织网络(vanet)作为智能交通系统的关键推动者,促进了车辆对车辆(V2V)和车辆对基础设施(V2I)的通信,已经获得了极大的关注。尽管具有潜力,但由于其高度动态的拓扑结构和稀疏的节点分布,特别是在基础设施覆盖有限的地区,vanet在保持可靠的端到端连接方面面临着严峻的挑战。解决这些限制对于提高VANETs的可靠性和可扩展性至关重要。为了弥补这些差距,这项工作引入了一种异构无人机辅助VANET框架,该框架利用无人驾驶飞行器(uav),也称为自主飞行器,来增强数据传输。本文的主要贡献包括:1)设计了一种新的自适应双模型路由(ADMR)协议,该协议在两种模式下工作:集群内通信的直接车辆集群和集群间通信的无人机/ rsu辅助路由;2)提出了一种改进的基于密度的动态车辆节点聚类算法(MDBSCAN);3)基于多智能体软行为者评价(MASAC)深度强化学习算法的改进无人机轨迹规划方法,优化网络可达性。仿真结果表明,所提出的无人机轨迹优化方法比现有方法具有更高的网络可达率。此外,ADMR协议在保持低端到端延迟的同时,提高了包投递率(PDR)。这些发现证明了提高VANET性能的潜力,同时也为智能交通系统和相关领域的发展提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信