Class Imbalance in the Automatic Interpretation of Remote Sensing Images: A Review

IF 4.7 2区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Pengdi Chen;Yuanrui Ren;Baoan Zhang;Yuan Zhao
{"title":"Class Imbalance in the Automatic Interpretation of Remote Sensing Images: A Review","authors":"Pengdi Chen;Yuanrui Ren;Baoan Zhang;Yuan Zhao","doi":"10.1109/JSTARS.2025.3555567","DOIUrl":null,"url":null,"abstract":"Class imbalance is a very challenging problem in data science, affecting the development of several application fields. This problem also plagues the automatic interpretation of remote sensing images. Especially in tasks such as classification mapping, object detection, change detection, and scene classification, the classes of training samples required by machine learning exhibit uneven distribution, which seriously affects the accuracy of model training. Our meta-analysis is based on 171 journal papers retrieved and screened from the Web of Science database, covering publication years, highly productive countries, highly cited authors, remote sensing data types, data augmentation methods, and the distribution of the main application fields. The solution to the proposed problem involves three aspects: model innovation and optimization, loss function improvement, and data augmentation. Experiments on benchmark datasets have demonstrated the effectiveness of these methods. In terms of remote sensing task applications, we provide a comprehensive review and analysis of recent research cases on deep learning aimed at addressing the class imbalance problem. Finally, we discuss the synergistic relationship between models, loss functions, and data augmentation, summarize the current challenges in this field, as well as propose several ideas for addressing the class imbalance problem.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"9483-9508"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10945429","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10945429/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Class imbalance is a very challenging problem in data science, affecting the development of several application fields. This problem also plagues the automatic interpretation of remote sensing images. Especially in tasks such as classification mapping, object detection, change detection, and scene classification, the classes of training samples required by machine learning exhibit uneven distribution, which seriously affects the accuracy of model training. Our meta-analysis is based on 171 journal papers retrieved and screened from the Web of Science database, covering publication years, highly productive countries, highly cited authors, remote sensing data types, data augmentation methods, and the distribution of the main application fields. The solution to the proposed problem involves three aspects: model innovation and optimization, loss function improvement, and data augmentation. Experiments on benchmark datasets have demonstrated the effectiveness of these methods. In terms of remote sensing task applications, we provide a comprehensive review and analysis of recent research cases on deep learning aimed at addressing the class imbalance problem. Finally, we discuss the synergistic relationship between models, loss functions, and data augmentation, summarize the current challenges in this field, as well as propose several ideas for addressing the class imbalance problem.
遥感影像自动解译中的类不平衡:综述
类失衡是数据科学中一个非常具有挑战性的问题,影响了多个应用领域的发展。这一问题也困扰着遥感影像的自动解译。特别是在分类映射、对象检测、变化检测、场景分类等任务中,机器学习所需训练样本的类别分布不均匀,严重影响了模型训练的准确性。我们的meta分析基于Web of Science数据库中检索和筛选的171篇期刊论文,涵盖出版年份、高产国家、高被引作者、遥感数据类型、数据增强方法和主要应用领域分布。该问题的解决涉及三个方面:模型创新与优化、损失函数改进和数据扩充。在基准数据集上的实验证明了这些方法的有效性。在遥感任务应用方面,我们对深度学习的最新研究案例进行了全面的回顾和分析,旨在解决类不平衡问题。最后,我们讨论了模型、损失函数和数据增强之间的协同关系,总结了该领域当前面临的挑战,并提出了一些解决类失衡问题的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.30
自引率
10.90%
发文量
563
审稿时长
4.7 months
期刊介绍: The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信