Unveiling the Correlation Between Lyapunov Coefficients and Deep Learning Performance Using Ceilometer Data

Razvan Vasile Ababei;Silvia Garofalide;Georgiana Bulai;Gheorghe Dan Dimitriu;Silviu Gurlui;Marius Mihai Cazacu
{"title":"Unveiling the Correlation Between Lyapunov Coefficients and Deep Learning Performance Using Ceilometer Data","authors":"Razvan Vasile Ababei;Silvia Garofalide;Georgiana Bulai;Gheorghe Dan Dimitriu;Silviu Gurlui;Marius Mihai Cazacu","doi":"10.1109/LGRS.2025.3557150","DOIUrl":null,"url":null,"abstract":"The planetary boundary layer (PBL) is a crucial parameter to investigate for characterizing the atmosphere, particularly concerning aerosol concentrations. Understanding the PBL allows us to estimate air quality, provide weather forecasts, and establish correlations with astronomical seeing conditions and atmospheric turbulence intensity. The PBL can be defined in many ways, but its importance remains constant as it is the atmospheric layer where most socioeconomic activities occur. In this letter, we present a method to predict the stochastic PBL height (SPBLH) using ceilometer data and a deep learning approach based on a fully connected neural network (NN). We found a correlation between the Lyapunov coefficient calculated for each SPBLH time series and the loss function, which is influenced by various factors such as atmospheric parameters, pollution, aerosols, and more. The performance of a typical NN used to predict a time series is significantly affected by the degree of chaos, quantified by the largest Lyapunov exponents (LLEs). Our results show a decrease in accuracy as a function of increasing LLE. Moreover, an increased number of virtual neurons in the NN can be detrimental to SPBLH prediction for the complex dynamics of the PBL due to atmospheric conditions and unforeseen events.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10947726","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10947726/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The planetary boundary layer (PBL) is a crucial parameter to investigate for characterizing the atmosphere, particularly concerning aerosol concentrations. Understanding the PBL allows us to estimate air quality, provide weather forecasts, and establish correlations with astronomical seeing conditions and atmospheric turbulence intensity. The PBL can be defined in many ways, but its importance remains constant as it is the atmospheric layer where most socioeconomic activities occur. In this letter, we present a method to predict the stochastic PBL height (SPBLH) using ceilometer data and a deep learning approach based on a fully connected neural network (NN). We found a correlation between the Lyapunov coefficient calculated for each SPBLH time series and the loss function, which is influenced by various factors such as atmospheric parameters, pollution, aerosols, and more. The performance of a typical NN used to predict a time series is significantly affected by the degree of chaos, quantified by the largest Lyapunov exponents (LLEs). Our results show a decrease in accuracy as a function of increasing LLE. Moreover, an increased number of virtual neurons in the NN can be detrimental to SPBLH prediction for the complex dynamics of the PBL due to atmospheric conditions and unforeseen events.
利用Ceilometer数据揭示Lyapunov系数与深度学习性能之间的相关性
行星边界层(PBL)是研究表征大气,特别是气溶胶浓度的关键参数。了解PBL使我们能够估计空气质量,提供天气预报,并建立与天文观测条件和大气湍流强度的相关性。PBL可以用多种方式定义,但它的重要性是不变的,因为它是大多数社会经济活动发生的大气层。在这封信中,我们提出了一种使用ceilometer数据和基于全连接神经网络(NN)的深度学习方法预测随机PBL高度(SPBLH)的方法。我们发现每个SPBLH时间序列计算的Lyapunov系数与损失函数之间存在相关性,损失函数受大气参数、污染、气溶胶等多种因素的影响。用于预测时间序列的典型神经网络的性能受到混沌程度的显著影响,混沌程度由最大Lyapunov指数(LLEs)量化。我们的结果表明,随着LLE的增加,准确率会下降。此外,由于大气条件和不可预见事件的影响,神经网络中虚拟神经元数量的增加可能不利于对PBL复杂动态的SPBLH预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信