{"title":"Cube-fx: Mapping Taylor Expansion Onto Matrix Multiplier-Accumulators of Huawei Ascend AI Processors","authors":"Yifeng Tang;Huaman Zhou;Zhuoran Ji;Cho-Li Wang","doi":"10.1109/TPDS.2025.3557444","DOIUrl":null,"url":null,"abstract":"Taylor expansion, a mature method for function evaluations used in Artificial Intelligence (AI) applications, approximates functions with polynomials. In addition to the function evaluations, AI applications require massive matrix multiplications, inspiring manufacturers to propose AI processors with matrix multiplier-accumulators (MACs). However, compared with the powerful Matrix MACs, the vectorized units of the AI processors cannot efficiently carry the existing Taylor expansion implementation of Single Instruction Multiple Data (SIMD) parallelism. Leveraging the Matrix MACs for Taylor expansion becomes an ideal direction. In previous studies, migrating optimized algorithms to the Matrix MACs requires matrix generation during the runtime. The generation is expensive and even cancels the accelerations brought by the Matrix MACs on the AI processors, which Taylor expansion also suffers. This article presents Cube-fx, a mapping algorithm of Taylor expansion for multiple functions onto Matrix MACs. Cube-fx expresses the building and computation in matrix multiplications without inefficient dynamic matrix generation. On Huawei Ascend processors, Cube-fx averagely achieves 1.64× speedups compared with vectorized Horner’s Method with 56.38<inline-formula><tex-math>$\\%$</tex-math></inline-formula> vectorized operations reduced.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 6","pages":"1115-1129"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10948365/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Taylor expansion, a mature method for function evaluations used in Artificial Intelligence (AI) applications, approximates functions with polynomials. In addition to the function evaluations, AI applications require massive matrix multiplications, inspiring manufacturers to propose AI processors with matrix multiplier-accumulators (MACs). However, compared with the powerful Matrix MACs, the vectorized units of the AI processors cannot efficiently carry the existing Taylor expansion implementation of Single Instruction Multiple Data (SIMD) parallelism. Leveraging the Matrix MACs for Taylor expansion becomes an ideal direction. In previous studies, migrating optimized algorithms to the Matrix MACs requires matrix generation during the runtime. The generation is expensive and even cancels the accelerations brought by the Matrix MACs on the AI processors, which Taylor expansion also suffers. This article presents Cube-fx, a mapping algorithm of Taylor expansion for multiple functions onto Matrix MACs. Cube-fx expresses the building and computation in matrix multiplications without inefficient dynamic matrix generation. On Huawei Ascend processors, Cube-fx averagely achieves 1.64× speedups compared with vectorized Horner’s Method with 56.38$\%$ vectorized operations reduced.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.