Gang Qu , Ziyu Zhou , Vince D. Calhoun , Aiying Zhang , Yu-Ping Wang
{"title":"Integrated brain connectivity analysis with fMRI, DTI, and sMRI powered by interpretable graph neural networks","authors":"Gang Qu , Ziyu Zhou , Vince D. Calhoun , Aiying Zhang , Yu-Ping Wang","doi":"10.1016/j.media.2025.103570","DOIUrl":null,"url":null,"abstract":"<div><div>Multimodal neuroimaging data modeling has become a widely used approach but confronts considerable challenges due to their heterogeneity, which encompasses variability in data types, scales, and formats across modalities. This variability necessitates the deployment of advanced computational methods to integrate and interpret diverse datasets within a cohesive analytical framework. In our research, we combine functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and structural MRI (sMRI) for joint analysis. This integration capitalizes on the unique strengths of each modality and their inherent interconnections, aiming for a comprehensive understanding of the brain’s connectivity and anatomical characteristics. Utilizing the Glasser atlas for parcellation, we integrate imaging-derived features from multiple modalities – functional connectivity from fMRI, structural connectivity from DTI, and anatomical features from sMRI – within consistent regions. Our approach incorporates a masking strategy to differentially weight neural connections, thereby facilitating an amalgamation of multimodal imaging data. This technique enhances interpretability at the connectivity level, transcending traditional analyses centered on singular regional attributes. The model is applied to the Human Connectome Project’s Development study to elucidate the associations between multimodal imaging and cognitive functions throughout youth. The analysis demonstrates improved prediction accuracy and uncovers crucial anatomical features and neural connections, deepening our understanding of brain structure and function. This study not only advances multimodal neuroimaging analytics by offering a novel method for integrative analysis of diverse imaging modalities but also improves the understanding of intricate relationships between brain’s structural and functional networks and cognitive development.</div></div>","PeriodicalId":18328,"journal":{"name":"Medical image analysis","volume":"103 ","pages":"Article 103570"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361841525001173","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multimodal neuroimaging data modeling has become a widely used approach but confronts considerable challenges due to their heterogeneity, which encompasses variability in data types, scales, and formats across modalities. This variability necessitates the deployment of advanced computational methods to integrate and interpret diverse datasets within a cohesive analytical framework. In our research, we combine functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and structural MRI (sMRI) for joint analysis. This integration capitalizes on the unique strengths of each modality and their inherent interconnections, aiming for a comprehensive understanding of the brain’s connectivity and anatomical characteristics. Utilizing the Glasser atlas for parcellation, we integrate imaging-derived features from multiple modalities – functional connectivity from fMRI, structural connectivity from DTI, and anatomical features from sMRI – within consistent regions. Our approach incorporates a masking strategy to differentially weight neural connections, thereby facilitating an amalgamation of multimodal imaging data. This technique enhances interpretability at the connectivity level, transcending traditional analyses centered on singular regional attributes. The model is applied to the Human Connectome Project’s Development study to elucidate the associations between multimodal imaging and cognitive functions throughout youth. The analysis demonstrates improved prediction accuracy and uncovers crucial anatomical features and neural connections, deepening our understanding of brain structure and function. This study not only advances multimodal neuroimaging analytics by offering a novel method for integrative analysis of diverse imaging modalities but also improves the understanding of intricate relationships between brain’s structural and functional networks and cognitive development.
期刊介绍:
Medical Image Analysis serves as a platform for sharing new research findings in the realm of medical and biological image analysis, with a focus on applications of computer vision, virtual reality, and robotics to biomedical imaging challenges. The journal prioritizes the publication of high-quality, original papers contributing to the fundamental science of processing, analyzing, and utilizing medical and biological images. It welcomes approaches utilizing biomedical image datasets across all spatial scales, from molecular/cellular imaging to tissue/organ imaging.