{"title":"Taming Offload Overheads in a Massively Parallel Open-Source RISC-V MPSoC: Analysis and Optimization","authors":"Luca Colagrande;Luca Benini","doi":"10.1109/TPDS.2025.3555718","DOIUrl":null,"url":null,"abstract":"Heterogeneous multi-core architectures combine on a single chip a few large, general-purpose <italic>host</i> cores, optimized for single-thread performance, with (many) clusters of small, specialized, energy-efficient <italic>accelerator</i> cores for data-parallel processing. Offloading a computation to the many-core acceleration fabric implies synchronization and communication overheads which can hamper overall performance and efficiency, particularly for small and fine-grained parallel tasks. In this work, we present a detailed, cycle-accurate quantitative analysis of the offload overheads on Occamy, an open-source massively parallel RISC-V based heterogeneous MPSoC. We study how the overheads scale with the number of accelerator cores. We explore an approach to drastically reduce these overheads by co-designing the hardware and the offload routines. Notably, we demonstrate that by incorporating multicast capabilities into the Network-on-Chip of a large (200+ cores) accelerator fabric we can improve offloaded application runtimes by as much as 2.3x, restoring more than 70% of the ideally attainable speedups. Finally, we propose a quantitative model to estimate the runtime of selected applications accounting for the offload overheads, with an error consistently below 15%.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 6","pages":"1193-1205"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10945339/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous multi-core architectures combine on a single chip a few large, general-purpose host cores, optimized for single-thread performance, with (many) clusters of small, specialized, energy-efficient accelerator cores for data-parallel processing. Offloading a computation to the many-core acceleration fabric implies synchronization and communication overheads which can hamper overall performance and efficiency, particularly for small and fine-grained parallel tasks. In this work, we present a detailed, cycle-accurate quantitative analysis of the offload overheads on Occamy, an open-source massively parallel RISC-V based heterogeneous MPSoC. We study how the overheads scale with the number of accelerator cores. We explore an approach to drastically reduce these overheads by co-designing the hardware and the offload routines. Notably, we demonstrate that by incorporating multicast capabilities into the Network-on-Chip of a large (200+ cores) accelerator fabric we can improve offloaded application runtimes by as much as 2.3x, restoring more than 70% of the ideally attainable speedups. Finally, we propose a quantitative model to estimate the runtime of selected applications accounting for the offload overheads, with an error consistently below 15%.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.