Impact of beam shaping on melt pool behavior in laser processing of stainless steel 316L: Thermal analysis using multispectral imaging

IF 6.7 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL
Ruihang Dai, Bicheng Yang, Katrin Wudy
{"title":"Impact of beam shaping on melt pool behavior in laser processing of stainless steel 316L: Thermal analysis using multispectral imaging","authors":"Ruihang Dai,&nbsp;Bicheng Yang,&nbsp;Katrin Wudy","doi":"10.1016/j.jmatprotec.2025.118835","DOIUrl":null,"url":null,"abstract":"<div><div>In Laser-based Powder Bed Fusion of Metals (PBF-LB/M), melt pool temperature distributions directly impact process dynamics and final part quality. While ring-shaped laser beam profiles promise improved melt pool stability, their effect on melt pool temperature remains unclear due to inaccurate absolute temperature measurements. To address this, we employ an in-house off-axial Multispectral Imaging (MSI) system (mean relative error less than 1.6%) to enable in-situ measurement of absolute melt pool temperatures and thermal gradients in 316L stainless steel. Comparing Gaussian and ring-shaped beams, we find that the Gaussian beam creates a concentrated heat zone with linearly increasing peak temperatures with increasing power under conduction mode. In contrast, the ring-shaped beam induces surface melting at lower power and full melting at higher power, resulting in a half-moon-shaped temperature distribution. Thermal gradient (indicative of Marangoni flow) reveals that the Gaussian beam generates stronger gradients (4–25 <span><math><mrow><mi>K</mi><mo>/</mo><mi>μ</mi><mi>m</mi></mrow></math></span>), driving circular Marangoni flow and bowl-shaped melt pools. The ring-shaped beam produces weaker gradients (2–18 <span><math><mrow><mi>K</mi><mo>/</mo><mi>μ</mi><mi>m</mi></mrow></math></span>), leading to flatter melt pools at low power and semi-elliptical melt pools at high power. This study provides critical insights into optimizing beam shaping strategies, broadening application possibilities, and deepening the understanding of melt pool dynamics in PBF-LB/M.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"340 ","pages":"Article 118835"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625001256","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

In Laser-based Powder Bed Fusion of Metals (PBF-LB/M), melt pool temperature distributions directly impact process dynamics and final part quality. While ring-shaped laser beam profiles promise improved melt pool stability, their effect on melt pool temperature remains unclear due to inaccurate absolute temperature measurements. To address this, we employ an in-house off-axial Multispectral Imaging (MSI) system (mean relative error less than 1.6%) to enable in-situ measurement of absolute melt pool temperatures and thermal gradients in 316L stainless steel. Comparing Gaussian and ring-shaped beams, we find that the Gaussian beam creates a concentrated heat zone with linearly increasing peak temperatures with increasing power under conduction mode. In contrast, the ring-shaped beam induces surface melting at lower power and full melting at higher power, resulting in a half-moon-shaped temperature distribution. Thermal gradient (indicative of Marangoni flow) reveals that the Gaussian beam generates stronger gradients (4–25 K/μm), driving circular Marangoni flow and bowl-shaped melt pools. The ring-shaped beam produces weaker gradients (2–18 K/μm), leading to flatter melt pools at low power and semi-elliptical melt pools at high power. This study provides critical insights into optimizing beam shaping strategies, broadening application possibilities, and deepening the understanding of melt pool dynamics in PBF-LB/M.

Abstract Image

激光束成形对316L不锈钢激光加工熔池行为的影响:多光谱成像热分析
在激光粉末床金属熔炼(PBF-LB/M)中,熔池温度分布直接影响过程动力学和最终零件质量。虽然环形激光束轮廓有望改善熔池的稳定性,但由于绝对温度测量不准确,它们对熔池温度的影响仍不清楚。为了解决这个问题,我们采用了内部的离轴多光谱成像(MSI)系统(平均相对误差小于1.6%)来原位测量316L不锈钢的绝对熔池温度和热梯度。比较高斯光束和环形光束,我们发现在传导模式下,高斯光束产生了一个集中的热区,随着功率的增加,峰值温度线性增加。相比之下,环形光束在低功率下引起表面熔化,在高功率下引起完全熔化,导致半月形的温度分布。热梯度(表明Marangoni流动)表明高斯光束产生更强的梯度(4-25 K/μm),驱动圆形Marangoni流动和碗状熔池。环形光束产生较弱的梯度(2 ~ 18 K/μm),导致低功率下熔池呈扁平状,高功率下熔池呈半椭圆形。该研究为优化束流成形策略、扩大应用可能性以及加深对PBF-LB/M熔池动力学的理解提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信