Electronic structure, magnetic anisotropy and Curie temperature of multiferroic MnSe2/Sc2CO2 van der Waals heterostructures

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Shiying He , Huimin Qu , Daifeng Zou
{"title":"Electronic structure, magnetic anisotropy and Curie temperature of multiferroic MnSe2/Sc2CO2 van der Waals heterostructures","authors":"Shiying He ,&nbsp;Huimin Qu ,&nbsp;Daifeng Zou","doi":"10.1016/j.physleta.2025.130555","DOIUrl":null,"url":null,"abstract":"<div><div>The integration of ferromagnetic and ferroelectric materials induces perpendicular magnetic anisotropy, a phenomenon that has garnered significant attention in the field of spintronics. In this study, two-dimensional multiferroic MnSe<sub>2</sub>/Sc<sub>2</sub>CO<sub>2</sub> van der Waals heterostructures were fabricated, and their magnetoelectric coupling properties were systematically investigated using first-principles calculations. By deliberately modulating the polarization states, it was observed that the easy magnetization axes consistently aligned out-of-plane, a hallmark of Heisenberg ferromagnetism. Moreover, through atom-resolved and orbital-resolved magnetic anisotropy energy (MAE) analyses, the fundamental mechanisms governing polarization-controlled magnetic anisotropy in the MnSe<sub>2</sub>/Sc<sub>2</sub>CO<sub>2</sub> heterostructures were elucidated. Notably, the heterostructures exhibited a significant shift in the Schottky barrier height upon ferroelectric polarization reversal. Additionally, Monte Carlo simulations were utilized to estimate the Curie temperature (<em>T</em><sub>C</sub>) of the MnSe<sub>2</sub>/Sc<sub>2</sub>CO<sub>2</sub> heterostructures. These findings not only contribute to the advancement of next-generation spintronics and non-volatile electrical control but also provide a foundational framework for the design of high-performance nanoscale devices with enhanced functional capabilities.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"548 ","pages":"Article 130555"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125003354","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of ferromagnetic and ferroelectric materials induces perpendicular magnetic anisotropy, a phenomenon that has garnered significant attention in the field of spintronics. In this study, two-dimensional multiferroic MnSe2/Sc2CO2 van der Waals heterostructures were fabricated, and their magnetoelectric coupling properties were systematically investigated using first-principles calculations. By deliberately modulating the polarization states, it was observed that the easy magnetization axes consistently aligned out-of-plane, a hallmark of Heisenberg ferromagnetism. Moreover, through atom-resolved and orbital-resolved magnetic anisotropy energy (MAE) analyses, the fundamental mechanisms governing polarization-controlled magnetic anisotropy in the MnSe2/Sc2CO2 heterostructures were elucidated. Notably, the heterostructures exhibited a significant shift in the Schottky barrier height upon ferroelectric polarization reversal. Additionally, Monte Carlo simulations were utilized to estimate the Curie temperature (TC) of the MnSe2/Sc2CO2 heterostructures. These findings not only contribute to the advancement of next-generation spintronics and non-volatile electrical control but also provide a foundational framework for the design of high-performance nanoscale devices with enhanced functional capabilities.
多铁MnSe2/Sc2CO2范德华异质结构的电子结构、磁各向异性和居里温度
铁磁材料和铁电材料的集成引起垂直磁各向异性,这一现象在自旋电子学领域引起了极大的关注。在本研究中,制备了二维多铁MnSe2/Sc2CO2范德华异质结构,并利用第一性原理计算系统地研究了其磁电耦合性能。通过有意调制极化态,观察到易磁化轴始终在平面外排列,这是海森堡铁磁性的标志。此外,通过原子分辨和轨道分辨磁各向异性能(MAE)分析,阐明了MnSe2/Sc2CO2异质结构中极化控制磁各向异性的基本机制。值得注意的是,在铁电极化反转时,异质结构表现出明显的肖特基势垒高度变化。此外,利用蒙特卡罗模拟方法估算了MnSe2/Sc2CO2异质结构的居里温度(TC)。这些发现不仅有助于下一代自旋电子学和非易失性电气控制的发展,而且为设计具有增强功能的高性能纳米级器件提供了基础框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信