Density response and correlation functions in the Wigner path integral representation. Monte Carlo simulations

IF 2.3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Vladimir Filinov, Pavel Levashov, Alexander Larkin
{"title":"Density response and correlation functions in the Wigner path integral representation. Monte Carlo simulations","authors":"Vladimir Filinov,&nbsp;Pavel Levashov,&nbsp;Alexander Larkin","doi":"10.1016/j.physleta.2025.130542","DOIUrl":null,"url":null,"abstract":"<div><div>The Wigner formulation of quantum mechanics and the Wiener—Khinchin theorem are employed to derive novel path integral representations of the imaginary part of the density-density response function (IMRF) and the dynamic structure factor (DSF) for a strongly coupled system of soft sphere fermions. To characterize the exchange interaction of fermions, a positive semi-definite Gram determinant is utilized to circumvent the “fermionic sign problem”. The Wigner path integral Monte Carlo (WPIMC) method is employed to compute the IMRFs, DSFs, and spin-resolved radial distribution functions (RDFs) across a broad spectrum of densities and temperatures. The physical significance of the RDF, IMRF, and DSF behavior is elucidated through the demonstration of interference effects arising from exchange and interparticle interactions.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"548 ","pages":"Article 130542"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960125003226","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Wigner formulation of quantum mechanics and the Wiener—Khinchin theorem are employed to derive novel path integral representations of the imaginary part of the density-density response function (IMRF) and the dynamic structure factor (DSF) for a strongly coupled system of soft sphere fermions. To characterize the exchange interaction of fermions, a positive semi-definite Gram determinant is utilized to circumvent the “fermionic sign problem”. The Wigner path integral Monte Carlo (WPIMC) method is employed to compute the IMRFs, DSFs, and spin-resolved radial distribution functions (RDFs) across a broad spectrum of densities and temperatures. The physical significance of the RDF, IMRF, and DSF behavior is elucidated through the demonstration of interference effects arising from exchange and interparticle interactions.
维格纳路径积分表示法中的密度响应和相关函数。蒙特卡罗模拟
利用量子力学的Wigner公式和Wiener-Khinchin定理,导出了软球费米子强耦合系统的密度-密度响应函数(IMRF)虚部和动态结构因子(DSF)的新颖路径积分表示。为了描述费米子的交换相互作用,利用一个正半定克行列式来规避“费米子符号问题”。采用维格纳路径积分蒙特卡罗(WPIMC)方法计算了宽谱密度和温度下的imrf、DSFs和自旋分辨径向分布函数(RDFs)。通过对交换和粒子间相互作用产生的干涉效应的论证,阐明了RDF、IMRF和DSF行为的物理意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters A
Physics Letters A 物理-物理:综合
CiteScore
5.10
自引率
3.80%
发文量
493
审稿时长
30 days
期刊介绍: Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信